Header

UZH-Logo

Maintenance Infos

Selenium-containing heterocycles from isoselenocyanates: synthesis of 1,3-selenazoles from N-phenylimidoyl isoselenocyanates


Zhou, Yuehui; Linden, Anthony; Heimgartner, Heinz (2000). Selenium-containing heterocycles from isoselenocyanates: synthesis of 1,3-selenazoles from N-phenylimidoyl isoselenocyanates. Helvetica Chimica Acta, 83:1576-1598.

Abstract

The reaction of N-phenylbenzamides 5 with excess SOCl2 under reflux gave N-phenylbenzimidoyl chlorides 6, which, on treatment with KSeCN in acetone, yielded imidoyl isoselenocyanates of type 2. These products, obtained in almost quantitative yield, were stable in the crystalline state. They were transformed into selenourea derivatives 7 by the reaction with NH3, or primary or secondary amines. In acetone at room temperature, 7 reacted with activated bromomethylene compounds such as 2-bromoacetates, acetamides, and acetonitriles, as well as phenacyl bromides and 4-cyanobenzyl bromide to give 1,3-selenazol-2-amines of type 9 (Scheme 2). A reaction mechanism via alkylation of the Se-atom of 7, followed by ring closure and elimination of aniline, is most likely (cf. Scheme 7). In the case of selenourea derivatives 7d and 7l with an unsubstituted NH2 group, an alternative ring closure via elimination of H2O led to 1,3-selenazoles 10a and 10b, respectively (Schemes 4 and 7). On treatment with NaOH, ethyl 1,3-selenazole-5-carboxylates 9l and 9s were saponified and decarboxylated to give the corresponding 5-unsubstituted 1,3-selenazoles 12a and 12b (Scheme 6). The molecular structures of selenourea 7f and the 1,3-selenazoles 9c and 9d have been established by X-ray crystallography (Figs. 1 and 3).

Abstract

The reaction of N-phenylbenzamides 5 with excess SOCl2 under reflux gave N-phenylbenzimidoyl chlorides 6, which, on treatment with KSeCN in acetone, yielded imidoyl isoselenocyanates of type 2. These products, obtained in almost quantitative yield, were stable in the crystalline state. They were transformed into selenourea derivatives 7 by the reaction with NH3, or primary or secondary amines. In acetone at room temperature, 7 reacted with activated bromomethylene compounds such as 2-bromoacetates, acetamides, and acetonitriles, as well as phenacyl bromides and 4-cyanobenzyl bromide to give 1,3-selenazol-2-amines of type 9 (Scheme 2). A reaction mechanism via alkylation of the Se-atom of 7, followed by ring closure and elimination of aniline, is most likely (cf. Scheme 7). In the case of selenourea derivatives 7d and 7l with an unsubstituted NH2 group, an alternative ring closure via elimination of H2O led to 1,3-selenazoles 10a and 10b, respectively (Schemes 4 and 7). On treatment with NaOH, ethyl 1,3-selenazole-5-carboxylates 9l and 9s were saponified and decarboxylated to give the corresponding 5-unsubstituted 1,3-selenazoles 12a and 12b (Scheme 6). The molecular structures of selenourea 7f and the 1,3-selenazoles 9c and 9d have been established by X-ray crystallography (Figs. 1 and 3).

Statistics

Citations

Dimensions.ai Metrics
55 citations in Web of Science®
66 citations in Scopus®
74 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 29 Oct 2013
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:English
Date:2000
Deposited On:29 Oct 2013 10:55
Last Modified:18 Apr 2018 11:43
Publisher:Wiley-Blackwell
ISSN:0018-019X
Funders:Dr. Helmut Legerlotz-Stiftung, F. Hoffmann-La Roche AG, Basel
OA Status:Closed
Publisher DOI:https://doi.org/10.1002/1522-2675(20000705)83:7<1576::AID-HLCA1576>3.0.CO;2-M

Download