Header

UZH-Logo

Maintenance Infos

Fas ligand expression in the organ of Corti


Bodmer, D; Brors, D; Bodmer, M; Pak, K; Ryan, A F (2003). Fas ligand expression in the organ of Corti. Audiology and Neurotology, 8(5):243-249.

Abstract

We have previously demonstrated by FACS analysis and histochemistry that Fas ligand (FasL) increases on cochlear cell surfaces after immune response or stimulation with gamma-interferon (IFN-gamma). To determine whether the appearance of FasL on cochlear cell membranes is related to gene expression or to posttranslational events, cochlear cells were treated with IFN-gamma. They were evaluated for FasL gene expression by real-time PCR and for FasL protein localization by confocal microscopy of permeabilized and immunolabeled cells. Real-time PCR analysis of cDNAs generated from unstimulated or IFN-gamma-stimulated organ of Corti demonstrated no change in the transcription of the gene encoding FasL. In contrast, confocal microscopy revealed dramatic changes in the cellular distribution of FasL, consistent with movement from the endoplasmic reticulum to the cytoplasm and cell membrane. The results suggest that recruitment of preformed FasL from intracellular compartments, rather than its biosynthesis, is responsible for the increase in FasL on the cell surface following IFN-gamma stimulation. This is similar to the response of cytotoxic T lymphocytes in which gene expression is not involved in FasL surface appearance. Presumably, the use of preformed FasL increases the rapidity of this response. FasL localization to the membrane may be involved in protecting the inner ear from autoimmunity or inflammation. Alternatively it may be related to cochlear cell death in response to inflammatory stress.

Abstract

We have previously demonstrated by FACS analysis and histochemistry that Fas ligand (FasL) increases on cochlear cell surfaces after immune response or stimulation with gamma-interferon (IFN-gamma). To determine whether the appearance of FasL on cochlear cell membranes is related to gene expression or to posttranslational events, cochlear cells were treated with IFN-gamma. They were evaluated for FasL gene expression by real-time PCR and for FasL protein localization by confocal microscopy of permeabilized and immunolabeled cells. Real-time PCR analysis of cDNAs generated from unstimulated or IFN-gamma-stimulated organ of Corti demonstrated no change in the transcription of the gene encoding FasL. In contrast, confocal microscopy revealed dramatic changes in the cellular distribution of FasL, consistent with movement from the endoplasmic reticulum to the cytoplasm and cell membrane. The results suggest that recruitment of preformed FasL from intracellular compartments, rather than its biosynthesis, is responsible for the increase in FasL on the cell surface following IFN-gamma stimulation. This is similar to the response of cytotoxic T lymphocytes in which gene expression is not involved in FasL surface appearance. Presumably, the use of preformed FasL increases the rapidity of this response. FasL localization to the membrane may be involved in protecting the inner ear from autoimmunity or inflammation. Alternatively it may be related to cochlear cell death in response to inflammatory stress.

Statistics

Citations

4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

13 downloads since deposited on 26 Mar 2009
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Otorhinolaryngology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:September 2003
Deposited On:26 Mar 2009 11:02
Last Modified:06 Dec 2017 16:10
Publisher:Karger
ISSN:1420-3030
Publisher DOI:https://doi.org/10.1159/000071996
PubMed ID:12904679

Download

Download PDF  'Fas ligand expression in the organ of Corti'.
Preview
Content: Published Version
Filetype: PDF
Size: 224kB
View at publisher