Header

UZH-Logo

Maintenance Infos

Magnetic resonance imaging of the liver: apparent diffusion coefficients from multiexponential analysis of b values greater than 50 s/mm2 do not respond to caloric intake despite increased portal-venous blood flow


Pazahr, Shila; Nanz, Daniel; Rossi, Cristina; Chuck, Natalie; Stenger, Ingo; Wurnig, Moritz C; Schick, Fritz; Boss, Andreas (2014). Magnetic resonance imaging of the liver: apparent diffusion coefficients from multiexponential analysis of b values greater than 50 s/mm2 do not respond to caloric intake despite increased portal-venous blood flow. Investigative Radiology, 49(3):138-146.

Abstract

PURPOSE: The purpose of this study was to measure potential changes of the apparent diffusion coefficient (ADC) in diffusion-weighted imaging of the liver before and after caloric challenge in correlation to the induced changes in portal vein flow. MATERIALS AND METHODS: The study was approved by the local ethics committee. Each of 10 healthy volunteers underwent 4 measurements in a 1.5-T whole-body magnetic resonance scanner on 2 different days: a first scan after fasting for at least 8 hours and a second scan 30 minutes after intake of a standardized caloric either a protein- or carbohydrate-rich meal. Diffusion-weighted spin-echo echo-planar magnetic resonance images were acquired at b values of 0, 50, 150, 250, 500, 750, and 1000 s/mm. In addition, portal vein flow was quantified with 2-dimensional phase-contrast imaging (velocity encoding parallel to flow direction, 60 cm/s). Mean ADC values for regions of interest in 3 different slices were measured from b50 to b250 and from b500 to b1000 images. RESULTS: Carbohydrate- and protein-rich food intake both resulted in a substantial increase in the portal vein flow (fasting state, 638.6 ± 202.3 mL/min; after protein intake, 1322 ± 266.8; after carbohydrate intake, 1767 ± 421.6). The signal decay with increasingly strong diffusion weighting (b values from 0 to 1000 s/mm2) exhibited a triexponential characteristic, implying fast, intermediate, and slow-moving water-molecule proton-spin ensembles in the liver parenchyma. Mean ADC for high b values (b500-b1000) after fasting was 0.93 ± 0.09 × 10 mm/s; that after protein intake, 0.93 ± 0.11 × 10; and that after carbohydrate intake, 0.93 ± 0.08 × 10. For intermediate b values (b50-b250), the signal-decay constants were 1.27 ± 0.14 × 10 mm/s, 1.28 ± 0.15 × 10, and 1.31 ± 0.09 × 10, respectively. There was no statistically significant difference between fasting and caloric challenge. CONCLUSIONS: The postprandial increase in portal vein flow is not accompanied by a change of liver parenchymal ADC values. In clinical diffusion imaging, patients may be scanned without prescan food-intake preparations. To minimize interference of perfusion effects, liver-tissue molecular water diffusion should be quantified using high b values (≥500 s/mm) only.

Abstract

PURPOSE: The purpose of this study was to measure potential changes of the apparent diffusion coefficient (ADC) in diffusion-weighted imaging of the liver before and after caloric challenge in correlation to the induced changes in portal vein flow. MATERIALS AND METHODS: The study was approved by the local ethics committee. Each of 10 healthy volunteers underwent 4 measurements in a 1.5-T whole-body magnetic resonance scanner on 2 different days: a first scan after fasting for at least 8 hours and a second scan 30 minutes after intake of a standardized caloric either a protein- or carbohydrate-rich meal. Diffusion-weighted spin-echo echo-planar magnetic resonance images were acquired at b values of 0, 50, 150, 250, 500, 750, and 1000 s/mm. In addition, portal vein flow was quantified with 2-dimensional phase-contrast imaging (velocity encoding parallel to flow direction, 60 cm/s). Mean ADC values for regions of interest in 3 different slices were measured from b50 to b250 and from b500 to b1000 images. RESULTS: Carbohydrate- and protein-rich food intake both resulted in a substantial increase in the portal vein flow (fasting state, 638.6 ± 202.3 mL/min; after protein intake, 1322 ± 266.8; after carbohydrate intake, 1767 ± 421.6). The signal decay with increasingly strong diffusion weighting (b values from 0 to 1000 s/mm2) exhibited a triexponential characteristic, implying fast, intermediate, and slow-moving water-molecule proton-spin ensembles in the liver parenchyma. Mean ADC for high b values (b500-b1000) after fasting was 0.93 ± 0.09 × 10 mm/s; that after protein intake, 0.93 ± 0.11 × 10; and that after carbohydrate intake, 0.93 ± 0.08 × 10. For intermediate b values (b50-b250), the signal-decay constants were 1.27 ± 0.14 × 10 mm/s, 1.28 ± 0.15 × 10, and 1.31 ± 0.09 × 10, respectively. There was no statistically significant difference between fasting and caloric challenge. CONCLUSIONS: The postprandial increase in portal vein flow is not accompanied by a change of liver parenchymal ADC values. In clinical diffusion imaging, patients may be scanned without prescan food-intake preparations. To minimize interference of perfusion effects, liver-tissue molecular water diffusion should be quantified using high b values (≥500 s/mm) only.

Statistics

Citations

8 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

27 downloads since deposited on 08 Nov 2013
6 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2014
Deposited On:08 Nov 2013 07:14
Last Modified:05 Apr 2016 17:06
Publisher:Lippincott, Williams & Wilkins
ISSN:0020-9996
Publisher DOI:https://doi.org/10.1097/RLI.0000000000000005
PubMed ID:24169068

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 4MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations