Header

UZH-Logo

Maintenance Infos

Circadian phase and its relationship to nighttime sleep in toddlers


Lebourgeois, Monique K; Carskadon, Mary A; Akacem, Lameese D; Simpkin, Charles T; Wright, Kenneth P; Achermann, Peter; Jenni, Oskar G (2013). Circadian phase and its relationship to nighttime sleep in toddlers. Journal of Biological Rhythms, 28(5):322-331.

Abstract

Circadian phase and its relation to sleep are increasingly recognized as fundamental factors influencing human physiology and behavior. Dim light melatonin onset (DLMO) is a reliable marker of the timing of the circadian clock, which has been used in experimental, clinical, and descriptive studies in the past few decades. Although DLMO and its relationship to sleep have been well documented in school-aged children, adolescents, and adults, very little is known about these processes in early childhood. The purpose of this study was 1) to describe circadian phase and phase angles of entrainment in toddlers and 2) to examine associations between DLMO and actigraphic measures of children's nighttime sleep. Participants were 45 healthy toddlers aged 30 to 36 months (33.5 ± 2.2 months; 21 females). After sleeping on a parent-selected schedule for 5 days (assessed with actigraphy and diaries), children participated in an in-home DLMO assessment involving the collection of saliva samples every 30 minutes for 6 hours. Average bedtime was 2015 ± 0036 h, average sleep onset time was 2043 ± 0043 h, average midsleep time was 0143 ± 0038 h, and average wake time was 0644 ± 0042 h. Average DLMO was 1929 ± 0051 h, with a 3.5-hour range. DLMO was normally distributed; however, the distribution of the bedtime, sleep onset time, and midsleep phase angles of entrainment were skewed. On average, DLMO occurred 47.8 ± 47.6 minutes (median = 39.4 minutes) before bedtime, 74.6 ± 48.0 minutes (median = 65.4 minutes) before sleep onset time, 6.2 ± 0.7 hours (median = 6.1 hours) before midsleep time, and 11.3 ± 0.7 hours before wake time. Toddlers with later DLMOs had later bedtimes (r = 0.46), sleep onset times (r = 0.51), midsleep times (r = 0.66), and wake times (r = 0.65) (all p < 0.001). Interindividual differences in toddlers' circadian phase are large and associated with their sleep timing. The early DLMOs of toddlers indicate a maturational delay in the circadian timing system between early childhood and adolescence. These findings are a first step in describing the fundamental properties of the circadian system in toddlers and have important implications for understanding the emergence of sleep problems and the consequences of circadian misalignment in early childhood.

Abstract

Circadian phase and its relation to sleep are increasingly recognized as fundamental factors influencing human physiology and behavior. Dim light melatonin onset (DLMO) is a reliable marker of the timing of the circadian clock, which has been used in experimental, clinical, and descriptive studies in the past few decades. Although DLMO and its relationship to sleep have been well documented in school-aged children, adolescents, and adults, very little is known about these processes in early childhood. The purpose of this study was 1) to describe circadian phase and phase angles of entrainment in toddlers and 2) to examine associations between DLMO and actigraphic measures of children's nighttime sleep. Participants were 45 healthy toddlers aged 30 to 36 months (33.5 ± 2.2 months; 21 females). After sleeping on a parent-selected schedule for 5 days (assessed with actigraphy and diaries), children participated in an in-home DLMO assessment involving the collection of saliva samples every 30 minutes for 6 hours. Average bedtime was 2015 ± 0036 h, average sleep onset time was 2043 ± 0043 h, average midsleep time was 0143 ± 0038 h, and average wake time was 0644 ± 0042 h. Average DLMO was 1929 ± 0051 h, with a 3.5-hour range. DLMO was normally distributed; however, the distribution of the bedtime, sleep onset time, and midsleep phase angles of entrainment were skewed. On average, DLMO occurred 47.8 ± 47.6 minutes (median = 39.4 minutes) before bedtime, 74.6 ± 48.0 minutes (median = 65.4 minutes) before sleep onset time, 6.2 ± 0.7 hours (median = 6.1 hours) before midsleep time, and 11.3 ± 0.7 hours before wake time. Toddlers with later DLMOs had later bedtimes (r = 0.46), sleep onset times (r = 0.51), midsleep times (r = 0.66), and wake times (r = 0.65) (all p < 0.001). Interindividual differences in toddlers' circadian phase are large and associated with their sleep timing. The early DLMOs of toddlers indicate a maturational delay in the circadian timing system between early childhood and adolescence. These findings are a first step in describing the fundamental properties of the circadian system in toddlers and have important implications for understanding the emergence of sleep problems and the consequences of circadian misalignment in early childhood.

Statistics

Citations

15 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 19 Nov 2013
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Children's Hospital Zurich > Medical Clinic
04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:October 2013
Deposited On:19 Nov 2013 13:49
Last Modified:05 Apr 2016 17:09
Publisher:SAGE Publications
ISSN:0748-7304
Publisher DOI:https://doi.org/10.1177/0748730413506543
PubMed ID:24132058

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 440kB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations