Header

UZH-Logo

Maintenance Infos

Intramolecular chimeras of the p51 subunit between HIV-1 and FIV reverse transcriptases suggest a stabilizing function for the p66 subunit in the heterodimeric enzyme.


Tasara, T; Amacker, M; Hübscher, U (1999). Intramolecular chimeras of the p51 subunit between HIV-1 and FIV reverse transcriptases suggest a stabilizing function for the p66 subunit in the heterodimeric enzyme. Biochemistry, 35(5):1633-1642.

Abstract

The human immunodeficiency virus (HIV) reverse transcriptase (RT) is a heterodimeric enzyme composed of a 66 kDa (p66) and a 51 kDa (p51) subunit. Recently we showed that p51 plays an important role in the conformation of p66 within the HIV-1 RT heterodimer and hence appears to influence its catalytic activities [Amacker, M., and H ubscher, U. (1998) J. Mol. Biol. 278, 757-765]. This was further investigated here via construction of three intramolecular chimeras of HIV-1 and FIV RTs. The first 25 and 112 amino acids of the N terminus, respectively, as well as the last 22 amino acids of the C terminus in the p51 subunit of HIV-1 RT were exchanged with the corresponding regions of the FIV RT and combined with the wild-type HIV-1 p66. Characterization of these chimeric RT heterodimers demonstrated significant biochemical differences in (i) DNA-dependent DNA synthesis, (ii) strand displacement DNA synthesis, and (iii) RNase H activity. Our results indicate that both the N and C termini of HIV-1 RT p51 appear to be important in stabilizing the RT heterodimer for enzymatic functions.

Abstract

The human immunodeficiency virus (HIV) reverse transcriptase (RT) is a heterodimeric enzyme composed of a 66 kDa (p66) and a 51 kDa (p51) subunit. Recently we showed that p51 plays an important role in the conformation of p66 within the HIV-1 RT heterodimer and hence appears to influence its catalytic activities [Amacker, M., and H ubscher, U. (1998) J. Mol. Biol. 278, 757-765]. This was further investigated here via construction of three intramolecular chimeras of HIV-1 and FIV RTs. The first 25 and 112 amino acids of the N terminus, respectively, as well as the last 22 amino acids of the C terminus in the p51 subunit of HIV-1 RT were exchanged with the corresponding regions of the FIV RT and combined with the wild-type HIV-1 p66. Characterization of these chimeric RT heterodimers demonstrated significant biochemical differences in (i) DNA-dependent DNA synthesis, (ii) strand displacement DNA synthesis, and (iii) RNase H activity. Our results indicate that both the N and C termini of HIV-1 RT p51 appear to be important in stabilizing the RT heterodimer for enzymatic functions.

Statistics

Citations

12 citations in Web of Science®
13 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed
Communities & Collections:05 Vetsuisse Faculty > Department of Molecular Mechanisms of Disease
07 Faculty of Science > Department of Molecular Mechanisms of Disease
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2 February 1999
Deposited On:11 Feb 2008 12:18
Last Modified:06 Dec 2017 13:01
Publisher:American Chemical Society
ISSN:0006-2960
Publisher DOI:https://doi.org/10.1021/bi9821162
PubMed ID:9931031

Download

Full text not available from this repository.
View at publisher