Header

UZH-Logo

Maintenance Infos

SOX10 ablation arrests cell cycle, induces senescence, and suppresses melanomagenesis


Cronin, Julia C; Watkins-Chow, Dawn E; Incao, Art; Hasskamp, Joanne H; Schönewolf, Nicola; Aoude, Lauren G; Hayward, Nicholas K; Bastian, Boris C; Dummer, Reinhard; Loftus, Stacie K; Pavan, William J (2013). SOX10 ablation arrests cell cycle, induces senescence, and suppresses melanomagenesis. Cancer Research, 73(18):5709-5718.

Abstract

The transcription factor SOX10 is essential for survival and proper differentiation of neural crest cell lineages, where it plays an important role in the generation and maintenance of melanocytes. SOX10 is also highly expressed in melanoma tumors, but a role in disease progression has not been established. Here, we report that melanoma tumor cell lines require wild-type SOX10 expression for proliferation and SOX10 haploinsufficiency reduces melanoma initiation in the metabotropic glutamate receptor 1 (Grm1(Tg)) transgenic mouse model. Stable SOX10 knockdown in human melanoma cells arrested cell growth, altered cellular morphology, and induced senescence. Melanoma cells with stable loss of SOX10 were arrested in the G1 phase of the cell cycle, with reduced expression of the melanocyte determining factor microphthalmia-associated transcription factor, elevated expression of p21WAF1 and p27KIP2, hypophosphorylated RB, and reduced levels of its binding partner E2F1. As cell-cycle dysregulation is a core event in neoplastic transformation, the role for SOX10 in maintaining cell-cycle control in melanocytes suggests a rational new direction for targeted treatment or prevention of melanoma.

Abstract

The transcription factor SOX10 is essential for survival and proper differentiation of neural crest cell lineages, where it plays an important role in the generation and maintenance of melanocytes. SOX10 is also highly expressed in melanoma tumors, but a role in disease progression has not been established. Here, we report that melanoma tumor cell lines require wild-type SOX10 expression for proliferation and SOX10 haploinsufficiency reduces melanoma initiation in the metabotropic glutamate receptor 1 (Grm1(Tg)) transgenic mouse model. Stable SOX10 knockdown in human melanoma cells arrested cell growth, altered cellular morphology, and induced senescence. Melanoma cells with stable loss of SOX10 were arrested in the G1 phase of the cell cycle, with reduced expression of the melanocyte determining factor microphthalmia-associated transcription factor, elevated expression of p21WAF1 and p27KIP2, hypophosphorylated RB, and reduced levels of its binding partner E2F1. As cell-cycle dysregulation is a core event in neoplastic transformation, the role for SOX10 in maintaining cell-cycle control in melanocytes suggests a rational new direction for targeted treatment or prevention of melanoma.

Statistics

Citations

20 citations in Web of Science®
19 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

29 downloads since deposited on 19 Nov 2013
15 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Dermatology Clinic
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2013
Deposited On:19 Nov 2013 16:55
Last Modified:07 Dec 2017 23:51
Publisher:American Association for Cancer Research
ISSN:0008-5472
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1158/0008-5472.CAN-12-4620
PubMed ID:23913827

Download

Download PDF  'SOX10 ablation arrests cell cycle, induces senescence, and suppresses melanomagenesis'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 2MB