Header

UZH-Logo

Maintenance Infos

Ethanol-induced impairment in the biosynthesis of N-linked glycosylation


Welti, Michael; Hülsmeier, Andreas J (2014). Ethanol-induced impairment in the biosynthesis of N-linked glycosylation. Journal of Cellular Biochemistry, 115(4):754-762.

Abstract

Deficiency in N-linked protein glycosylation is a long-known characteristic of alcoholic liver disease and congenital disorders of glycosylation. Previous investigations of ethanol-induced glycosylation deficiency demonstrated perturbations in the early steps of substrate synthesis and in the final steps of capping N-linked glycans in the Golgi. The significance of the biosynthesis of N-glycan precursors in the endoplasmic reticulum, however, has not yet been addressed in alcoholic liver disease. Ethanol-metabolizing hepatoma cells were treated with increasing concentrations of ethanol. Transcript analysis of genes involved in the biosynthesis of N-glycans, activity assays of related enzymes, dolichol-phosphate quantification, and analysis of dolichol-linked oligosaccharides were performed. Upon treatment of cells with ethanol, we found a decrease in the final N-glycan precursor Dol-PP-GlcNAc2 Man9 Glc3 and in C95- and C100-dolichol-phosphate levels. Transcript analysis of genes involved in N-glycosylation showed a 17% decrease in expression levels of DPM1, a subunit of the dolichol-phosphate-mannose synthase, and a 8% increase in RPN2, a subunit of the oligosaccharyl transferase. Ethanol treatment decreases the biosynthesis of dolichol-phosphate. Consequently, the formation of N-glycan precursors is affected, resulting in an aberrant precursor assembly. Messenger RNA levels of genes involved in N-glycan biosynthesis are slightly affected by ethanol treatment, indicating that the assembly of N-glycan precursors is not regulated at the transcriptional level. This study confirms that ethanol impairs N-linked glycosylation by affecting dolichol biosynthesis leading to impaired dolichol-linked oligosaccharide assembly. Together our data help to explain the underglycosylation phenotype observed in alcoholic liver disease and congenital disorders of glycosylation.

Abstract

Deficiency in N-linked protein glycosylation is a long-known characteristic of alcoholic liver disease and congenital disorders of glycosylation. Previous investigations of ethanol-induced glycosylation deficiency demonstrated perturbations in the early steps of substrate synthesis and in the final steps of capping N-linked glycans in the Golgi. The significance of the biosynthesis of N-glycan precursors in the endoplasmic reticulum, however, has not yet been addressed in alcoholic liver disease. Ethanol-metabolizing hepatoma cells were treated with increasing concentrations of ethanol. Transcript analysis of genes involved in the biosynthesis of N-glycans, activity assays of related enzymes, dolichol-phosphate quantification, and analysis of dolichol-linked oligosaccharides were performed. Upon treatment of cells with ethanol, we found a decrease in the final N-glycan precursor Dol-PP-GlcNAc2 Man9 Glc3 and in C95- and C100-dolichol-phosphate levels. Transcript analysis of genes involved in N-glycosylation showed a 17% decrease in expression levels of DPM1, a subunit of the dolichol-phosphate-mannose synthase, and a 8% increase in RPN2, a subunit of the oligosaccharyl transferase. Ethanol treatment decreases the biosynthesis of dolichol-phosphate. Consequently, the formation of N-glycan precursors is affected, resulting in an aberrant precursor assembly. Messenger RNA levels of genes involved in N-glycan biosynthesis are slightly affected by ethanol treatment, indicating that the assembly of N-glycan precursors is not regulated at the transcriptional level. This study confirms that ethanol impairs N-linked glycosylation by affecting dolichol biosynthesis leading to impaired dolichol-linked oligosaccharide assembly. Together our data help to explain the underglycosylation phenotype observed in alcoholic liver disease and congenital disorders of glycosylation.

Statistics

Citations

4 citations in Web of Science®
4 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

44 downloads since deposited on 20 Nov 2013
9 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Physiology
07 Faculty of Science > Institute of Physiology
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2014
Deposited On:20 Nov 2013 16:32
Last Modified:05 Apr 2016 17:10
Publisher:Wiley-Blackwell
ISSN:0730-2312
Publisher DOI:https://doi.org/10.1002/jcb.24713
PubMed ID:24243557

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 770kB
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations