Header

UZH-Logo

Maintenance Infos

Local land-use change based risk estimation for future glacier lake outburst flood


Nussbaumer, Souria; Huggel, Christian; Schaub, Yvonne; Walz, Ariane (2013). Local land-use change based risk estimation for future glacier lake outburst flood. Natural Hazards and Earth System Sciences, 1(4):4349-4387.

Abstract

Effects of climate change are particularly strong in high-mountain regions. Most visibly, glaciers are shrinking at a rapid pace, and as a consequence, glacier lakes are forming or growing. At the same time the stability of mountain slopes is reduced by glacier retreat, permafrost thaw and other factors, resulting in an increasing risk of landslides which can potentially impact lakes and therewith trigger far reaching and devastating outburst floods. To manage risks from existing or future lakes, strategies need to be developed to plan in time for adequate risk reduction measures at a local level. However, methods to assess risks from future lake outbursts are not available. It is actually a challenge to develop methods to evaluate both, future hazard potential and future damage potential.
Here we present an analysis of future risks related to glacier lake outbursts for a local site in southern Switzerland (Naters, Valais). To estimate two hazard scenarios, we used glacier shrinkage and lake formation modelling, simple flood modelling and field work. Further we developed a land-use model to quantify and allocate land-use changes based on local-to-regional storylines and three scenarios of land-use driving forces. Results are conceptualized in a matrix of three land-use and two hazard scenarios for a time period of 2045, and show the distribution of risk in the community of Naters, including high and very high risk areas. The study corroborates the importance of land-use planning to effectively reduce future risks related to lake outburst floods.

Abstract

Effects of climate change are particularly strong in high-mountain regions. Most visibly, glaciers are shrinking at a rapid pace, and as a consequence, glacier lakes are forming or growing. At the same time the stability of mountain slopes is reduced by glacier retreat, permafrost thaw and other factors, resulting in an increasing risk of landslides which can potentially impact lakes and therewith trigger far reaching and devastating outburst floods. To manage risks from existing or future lakes, strategies need to be developed to plan in time for adequate risk reduction measures at a local level. However, methods to assess risks from future lake outbursts are not available. It is actually a challenge to develop methods to evaluate both, future hazard potential and future damage potential.
Here we present an analysis of future risks related to glacier lake outbursts for a local site in southern Switzerland (Naters, Valais). To estimate two hazard scenarios, we used glacier shrinkage and lake formation modelling, simple flood modelling and field work. Further we developed a land-use model to quantify and allocate land-use changes based on local-to-regional storylines and three scenarios of land-use driving forces. Results are conceptualized in a matrix of three land-use and two hazard scenarios for a time period of 2045, and show the distribution of risk in the community of Naters, including high and very high risk areas. The study corroborates the importance of land-use planning to effectively reduce future risks related to lake outburst floods.

Statistics

Altmetrics

Downloads

60 downloads since deposited on 29 Nov 2013
24 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Geography
Dewey Decimal Classification:910 Geography & travel
Language:English
Date:2013
Deposited On:29 Nov 2013 11:49
Last Modified:05 Apr 2016 17:11
Publisher:Copernicus Publications
ISSN:1561-8633
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.5194/nhessd-1-4349-2013

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 7MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations