Header

UZH-Logo

Maintenance Infos

On averages of randomized class functions on the symmetric groups and their asymptotics


Dehaye, Paul Olivier; Zeindler, Dirk (2013). On averages of randomized class functions on the symmetric groups and their asymptotics. Annales de l'Institut Fourier, 63(4):1227-1262.

Abstract

The second author had previously obtained explicit generating functions for moments of characteristic polynomials of permutation matrices (n points). In this paper, we generalize many aspects of this situation. We introduce random shifts of the eigenvalues of the permutation matrices, in two different ways: independently or not for each subset of eigenvalues associated to the same cycle. We also consider vastly more general functions than the characteristic polynomial of a permutation matrix, by first finding an equivalent definition in terms of cycletype of the permutation. We consider other groups than the symmetric group, for instance the alternating group and other Weyl groups. Finally, we compute some asymptotics results when n tends to infinity. This last result requires additional ideas: it exploits properties of the Feller coupling, which gives asymptotics for the lengths of cycles in permutations of many points.

Abstract

The second author had previously obtained explicit generating functions for moments of characteristic polynomials of permutation matrices (n points). In this paper, we generalize many aspects of this situation. We introduce random shifts of the eigenvalues of the permutation matrices, in two different ways: independently or not for each subset of eigenvalues associated to the same cycle. We also consider vastly more general functions than the characteristic polynomial of a permutation matrix, by first finding an equivalent definition in terms of cycletype of the permutation. We consider other groups than the symmetric group, for instance the alternating group and other Weyl groups. Finally, we compute some asymptotics results when n tends to infinity. This last result requires additional ideas: it exploits properties of the Feller coupling, which gives asymptotics for the lengths of cycles in permutations of many points.

Statistics

Altmetrics

Downloads

36 downloads since deposited on 06 Dec 2013
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Mathematics
Dewey Decimal Classification:510 Mathematics
Language:English
Date:2013
Deposited On:06 Dec 2013 11:57
Last Modified:26 Jan 2017 08:55
Publisher:Association des Annales de l'Institut Fourier
ISSN:0373-0956
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.5802/aif.2802

Download

Preview Icon on Download
Preview
Content: Published Version
Language: English
Filetype: PDF
Size: 626kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations