Header

UZH-Logo

Maintenance Infos

Non-rapid eye movement sleep with low muscle tone as a marker of rapid eye movement sleep regulation


Tinguely, G; Huber, R; Borbely, A A; Achermann, P (2006). Non-rapid eye movement sleep with low muscle tone as a marker of rapid eye movement sleep regulation. BMC Neuroscience, 7:2.

Abstract

BACKGROUND: It was recently reported that epochs of non-REM sleep (NREMS) with low muscle tone represent a partial correlate of REM sleep (REMS). To further investigate this phenomenon, episodes of restricted night-time sleep (23:00-03.00 h) and subsequent morning sleep (10:00-13:00 h) were analysed. RESULTS: Epochs of NREMS with low muscle tone (NLMT) were identified. Their frequency was higher in morning sleep than in night sleep. At night, the latency to the first occurrence of NLMT showed a bimodal distribution with modes at sleep onset and close to REMS onset. In morning sleep, the distribution was unimodal with the mode at sleep onset. An episode of NLMT at sleep onset occurred in 35.5% of the night sleep episodes and in 60.9% of the morning sleep episodes without sleep onset REMS (SOREMS). Also SOREMS occurred predominantly in morning sleep. REMS episodes were longer and NREMS episodes shorter in morning sleep than in night sleep, whereas cycle duration did not differ. Simulating the time course of slow-wave activity revealed a close correspondence between empirical and computed values for night sleep, and some discrepancies for morning sleep. CONCLUSION: The results provide further evidence that NREMS with low muscle tone is a marker of REMS regulation. NLMT at sleep onset may represent an early manifestation of REMS.

Abstract

BACKGROUND: It was recently reported that epochs of non-REM sleep (NREMS) with low muscle tone represent a partial correlate of REM sleep (REMS). To further investigate this phenomenon, episodes of restricted night-time sleep (23:00-03.00 h) and subsequent morning sleep (10:00-13:00 h) were analysed. RESULTS: Epochs of NREMS with low muscle tone (NLMT) were identified. Their frequency was higher in morning sleep than in night sleep. At night, the latency to the first occurrence of NLMT showed a bimodal distribution with modes at sleep onset and close to REMS onset. In morning sleep, the distribution was unimodal with the mode at sleep onset. An episode of NLMT at sleep onset occurred in 35.5% of the night sleep episodes and in 60.9% of the morning sleep episodes without sleep onset REMS (SOREMS). Also SOREMS occurred predominantly in morning sleep. REMS episodes were longer and NREMS episodes shorter in morning sleep than in night sleep, whereas cycle duration did not differ. Simulating the time course of slow-wave activity revealed a close correspondence between empirical and computed values for night sleep, and some discrepancies for morning sleep. CONCLUSION: The results provide further evidence that NREMS with low muscle tone is a marker of REMS regulation. NLMT at sleep onset may represent an early manifestation of REMS.

Statistics

Citations

10 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

83 downloads since deposited on 11 Feb 2008
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2006
Deposited On:11 Feb 2008 12:18
Last Modified:28 Aug 2017 11:24
Publisher:BioMed Central
ISSN:1471-2202
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1471-2202-7-2
PubMed ID:16401347

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 430kB
View at publisher
Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations