Impact of laminar flow velocity of different acids on enamel calcium loss

Attin, T; Becker, K; Wiegand, A; Tauböck, T T; Wegehaupt, F J

Abstract: OBJECTIVE: The aim of the study was to evaluate the impact of flow velocity under laminar flow conditions of different acidic solutions on enamel erosion. MATERIAL AND METHODS: A total of 240 bovine enamel specimens were prepared and allocated to 30 groups (n = 8 each). Samples of 18 groups were superfused in a flow chamber system with laminar flow behavior using 1 ml of citric acid or hydrochloric acid (HCl) of pH 2.0, 2.6 or 3.0. Flow rates in the sample chamber were adjusted to 10, 60 or 100 l/min. To simulate turbulent flow behavior, samples of six groups were immersed in 1 ml of the respective solution, which was vortexed (15 min, 600 rpm). For simulating non-agitated conditions, specimens of the remaining six groups were immersed in 1 ml of the respective solution without stirring. Calcium in the solutions, released from the enamel samples, was determined using Arsenazo III method. RESULTS: For acidic solutions of pH 2.6 and 3.0, erosive potential of citric acid was equivalent to that of HCl at a flow of 100 l/min. The same observation was made for the samples subjected to turbulent conditions at pH 3. At all other conditions, citric acid induced a significantly higher calcium loss than HCl. CONCLUSION: It is concluded that under slow laminar flow conditions, flow rate variations lead to higher erosive impact of citric acid compared to hydrochloric acid at pH 2.0, but not at pH 2.6 and increasing laminar flow or turbulent conditions. CLINICAL RELEVANCE: Erosive enamel dissolution under laminar flow conditions is a complex issue influenced by flow rate and acidic substrate.

DOI: https://doi.org/10.1007/s00784-012-0731-3
Impact of laminar flow velocity of different acids on enamel calcium loss

Attin T, Becker K, Wiegand A, Tauböck TT, Wegehaupt FJ

Clinic of Preventive Dentistry, Periodontology and Cariology
Center of Dental Medicine
University of Zurich
Plattenstrasse 11
8032 Zurich, Switzerland

Short title:
Acid flow velocity and erosion

Key words:
Enamel, acid flow, velocity, calcium, erosion

Corresponding author:
Prof. Dr. Thomas Attin
Clinic for Preventive Dentistry, Periodontology and Cariology, University of Zurich
Plattenstrasse 11, CH-8032 Zurich, Switzerland
Tel: +41 44 634 32 71, Fax: +41 44 634 43 08
E-Mail: thomas.attin@zzm.uzh.ch
Abstract

Objective: To evaluate the impact of flow velocity under laminar flow conditions of different acidic solutions on enamel erosion.

Material and methods: A total of 240 bovine enamel specimens were prepared and allocated to 30 groups (n=8 each). Samples of 18 groups were superfused in a flow chamber system with laminar flow behavior using 1 ml of citric acid or hydrochloric acid (HCl) of pH: 2.0, 2.6, or 3.0. Flow rates in the sample chamber were adjusted to 10, 60 or 100 µl/min. To simulate turbulent flow behavior, samples of six groups were immersed in 1 ml of the respective solution, which was vortexed (15 min, 600 rpm). For simulating non-agitated conditions, specimens of the remaining six groups were immersed in 1 ml of the respective solution without stirring. Calcium in the solutions, released from the enamel samples, was determined using Arsenazo-III-method.

Results: For acidic solutions of pH 2.6 and 3.0, erosive potential of citric acid was equivalent to that of HCl at flow of 100 µl/min. The same observation was made for the samples subjected to turbulent conditions at pH 3. At all other conditions, citric acid induced a significantly higher calcium loss than HCl.

Conclusion: It is concluded that under slow laminar flow conditions, flow rate variations lead to higher erosive impact of citric acid compared to hydrochloric acid at pH 2.0, but not at pH ≥ 2.6 and increasing laminar flow or turbulent conditions.

Clinical relevance: Erosive enamel dissolution under laminar flow conditions is a complex issue influenced by flow rate and acidic substrate.
Introduction

There is some evidence that prevalence of dental erosion might be related to consumption of dietary acids [1-3], although this association is not clearly proved in every study [4]. Thus, focus has been applied on chemical characterization and alterations of acidic dietary substances to achieve a more comprehensive insight into the aetiology of dental erosions and their prevention [5-7]. Beside dietary acids, hydrochloric acid, originating from the stomach (gastric juice) and entering the oral cavity for example in case of vomiting or gastro-oesophageal reflux, is also held responsible for erosive tooth dissolution [8]. With regard to dietary acids, it was elucidated that the content of calcium and phosphate, in particular the saturation of the solution with respect to hydroxy apatite, the pH and amount of titrable acid, and also the kind of acid do have an impact on erosivity of a solution or beverage.

However, beside the chemical aspects of substances, also the physical or physico-chemical aspects, such as adhesiveness of the solution to the tooth surface, temperature, flow rate and agitation of the solution seem to have an influence on its erosive potential [9-11].

In the oral cavity, it might be assumed that during drinking or even swishing of a solution through the teeth, turbulences might occur, which lead to transport of unused H+-protons of the solution to the tooth surface, thus increasing tooth demineralization. This hypothesis was corroborated in a laboratory study, in which enamel dissolution in an agitated solution was distinctly increased compared to a non-agitated solution [9].

Despite agitation or stirring of a solution, a semi-static layer of the liquid is formed immediately adjacent to solid surface, such as those of tooth samples immersed in a liquid. Within this so-called Nernst diffusion layer of about 1-10 µm thickness, diffusion alone controls the ionic transfer to the tooth surface. According to Fick’s laws, the diffusion within the Nernst Layer and in the bulk of a solution occurs down a concentration gradient [12]. At low liquid velocities the layer becomes thicker and less undersaturated with respect to dissolved tooth mineral than under high velocities. The concentration of acidic or mineral compounds within the agitated part of the solution stays more or less constant, under the premise that the solution is applied in abundance. In an acidic solution, the Nernst layer is rapidly saturated with respect to tooth mineral, so that further demineralization is slowing down or even stopping,
unless fresh acidic compounds are diffusing into the layer or the layer is completely replaced under agitated conditions or unless further dissociation of the acid is occurring within the layer.

However, during retention of an acidic substance in the oral cavity, also laminar flow of a solution might happen, so that the diffusion within the Nernst layer and the ability of the acid to produce further H\(^+\)-protons by dissociation might be of importance. Beside its capability to act as a chelating agent, citric acid as a weak trivalent acid (pKa\(_1\) = 3.13, pKa\(_2\) = 4.76, pKa\(_3\) = 6.4), also has the potential to further dissociate, when free protons have already been used-up in the demineralization process. In contrast, strong monovalent acids, such as hydrochloric acid (pKa = -6) are already completely dissociated, so that further delivery of protons in a closed or semi-closed system, such as the Nernst layer, only happens limitedly. Moreover, citric acid, as a weak acid, may act as an acidic buffer, especially at pH-values, which are close to one of the three different pKa-values. Thus, it might be speculated that, even under assumption of same initial pH, a weak polyvalent acid might behave different and more erosive under laminar flow conditions as compared to a strong monovalent acid.

The aim of the present study was to evaluate the erosive behaviour of a monovalent strong acid and a polyvalent weak acid under laminar flow conditions. Hydrochloric acid and citric acid were selected as representatives for a monovalent strong acid and a polyvalent medium-strong to weak acid, respectively, which also might be found in the oral cavity during gastro-oesophageal reflux (hydrochloric acid) or consumption of beverages (citric acid).

Material and Methods

Specimen preparation

Sixty bovine permanent mandibular incisors form 2-3-year-old cattle were extracted. The crowns were separated from roots, cleaned of periodontal tissue residues by means of a scaler and stored in 0.5% thymol solution for a maximum of 6 months at 5°C until used in the present study. Four enamel cylindrical specimens (diameter 3 mm) were prepared from each crown using a water-cooled trephine mill and embedded in acrylic resin blocks (6 mm in diameter, Paladur, Heraeus Kulzer, Germany). The enamel surface was ground plane and fine with water-cooled carborundum discs (1200, 2400 and 4000 grit, Water Proof Silicon carbide Paper, Struers, Erkrath, Germany).
Treatment of specimens

Then the specimens were randomly allocated to 30 groups (n = 8). Samples were either treated with citric acid (Fluka, Buchs Switzerland) or hydrochloric acid (Merck, Darmstadt, Germany) dilutions with pH 2.0, 2.6 and 3.0. One-hundred-forty-four samples were fixed in a superfusion chamber, 48 were stored in 1 ml of an acidic solution without agitation and 48 were immersed with agitation using a vortex (600 rpm, mini-Shaker, Fisher Scientific, Pittsburgh, USA). In the superfusion chamber system the samples were rinsed with 1 ml of the respective acid. For adjustment of flow rate, the amount of liquid flown through the chambers was collected and measured during intervals of 30 min, and the connected pump was set accordingly. The flow rate in the superfusion chambers was then adjusted to 10, 60 or 100 µl/min. Thus, the total contact time of the acidic solutions with the samples in the superfusion chambers was different for the specimens submitted to different flow velocities. Thus the following groups resulted (Table 1).

Description of superfusion chamber system

In the superfusion chambers each sample was fixed in a metal jig, which allows for exposure of the enamel samples surface to a small erosion chamber of 0.94 mm3 volume (2 mm in diameter x 0.3 mm in height). For rinsing of the samples, the respective acidic solution was pumped from a reservoir outside of the chambers into the space of 0.3 mm height, which was located between the surface of the enamel specimen, and the top of the chamber. The solution enters and leaves the chamber through two orifices of 0.4 mm in diameter each. The distance between these orifices amounts to 1.6 mm, i.e. travelled length of the fluid. When adjusting the flow rate to maximum speed of 100 µl/min, the solution runs over the specimen surface with a velocity of 212 mm/min (0.0035 m/s).

The Reynolds number is a dimensionless number in fluid mechanics. It expresses the ratio of inertial forces to viscous forces and is used to calculate, whether a fluid movement is regarded as laminar or turbulent. The Reynolds number \(Re \) of the above described camber system is calculated as:

\[
 Re = \left(\frac{v \cdot d}{\nu} \right)
\]

(with: \(d = \) travelled length of the fluid [m], \(v = \) mean velocity of the fluid [m/s] and \(\nu = \) kinematic viscosity of the fluid, 1.002 [m2/s] for water at 20° C).
According to this calculation, the Reynolds number for the system is: \(\text{Re} \ll 1 \). This means that the fluid movement in the chamber is regarded as having laminar flow behaviour, since laminar flow is defined to occur, when \(\text{Re} < 2000 \).

Prior to the acid exposure, distilled water was rinsed through the chamber to ensure a bubble-free flow. Due to the small height of the space, continuous flow of the acid without generation of bubbles resulted. Each eight chambers were connected to a single tube of a multichannel pump (Ismatec, Glattbrugg, Switzerland). The fluid flown over the specimens, and the solutions used for immersion and vortexing were analysed for calcium, released from the enamel samples.

Calcium analysis

Calcium release into the acidic solutions was assessed by colorimetric analysis, using Arsenazo III method (Fluitest, Ca-A-II, analyticon, Lichtenfels, Germany) [13]. Arsenazo III reacts with calcium in an acidic solution forming a blue purple complex, whose intensity developed is proportional to the calcium concentration in the solution. Absorption can be determined at \(\lambda = 650 \text{ nm} \). Reagent for determination of calcium was composed of 100 mmol/l Imidazol buffer (pH 6.5) and 0.12 mmol/l arsenazo III. Individual standard curves were obtained by admixing diluted samples of standardized calcium solutions to 1-20 µl of the respective acid at pH values of 2.0, 2.6 and 3.0. The lower limit of quantification (LLoQ) to detection calcium in citric acid using this method amounts to 15 nmol Ca/ml and was known from previous studies, as also the range of expected enamel calcium release [13-15]. This procedure of achieving calibration curves allowed for measuring calcium in citric acid, although chelation of calcium with the citric acid anion is supposed to happen.

For determination of the calcium content in the solutions, 100 µl of the reagent was added to each of the 96 wells of a microplate and mixed with standards or 1-20 µl of the respective acid solution, which has been flown over the specimens. Absorbance was read within 30 min after mixing of the solutions. The measurements were performed at room temperature.

In order to validate the data from the calcium analysis and to make sure that the two acids did not impair calcium analysis, a phosphate analysis of the solutions was also performed. For this, the malachite green procedure to detect minimal amounts of phosphate dissolved in acidic solutions was used [16]. These data were further used to check, whether the ratio of calcium and phosphate released from the enamel
samples was constant and comparable for the two acidic solutions. A constant calcium/phosphate ratio is able to indicate the reliability of the data.

Statistical analysis
Descriptive statistics (mean, SD) of the differences of the between acids were computed. Normal distribution of the data was checked with Kolmogorov-Smirnov and Shapiro-Wilk tests and was not found in 2 of 30 groups. In order to disclose the differences in the measurements between acid-groups, non-parametric Mann-Whitney U-tests were applied for each combination of pH and flow rate separately. Results of the statistical analysis with p-values below 0.05 were considered to be statistically significant. Comparisons between the different flow conditions within one acid were not applicable, since the contact time of the 1 ml acid solutions to the samples were different due to the set-up of the experiment. Thus, only comparisons of samples treated with flow rate of 0 vs. 10 µl/min (100 min contact) and 100 µl/min vs. vortex (10 min contact) were performed.

Results
In Table 2, the calcium release from the enamel samples into 1 ml of the respective acid is given for all experimental groups. Due to clarity reasons, data of phosphate analysis are not shown, but for all groups the findings of the phosphate determination were in agreement to the results of the calcium analysis. Calcium/phosphate ratios (C/P-ratio) in all analyzed solutions were stable in a range of 1.98 ± 0.48, with C/P-ratio of 2.02 ± 0.37 for HCl and 1.99 ± 0.57 for citric acid. These findings indicated reliability of the calcium data measured under the different pH conditions in the different acidic solutions.

Samples treated with flow rate of 0 vs. 10 µl/min (100 min contact) showed an increase in calcium release for the specimens subjected to the respective acid in the flow chamber irrespective of the acid and pH applied. Immersion in vortex led to significantly higher calcium loss than under flow conditions at 100 µl/min. For acidic solutions of pH 2.6 and 3.0, erosive potential of citric acid was equivalent to that of HCl at flow of 100 µl/min. The same outcome was observed for the samples subjected to turbulent conditions in the vortex at pH 3. In the immersion group at pH 3.0, hydrochloric acid led to higher enamel calcium loss than citric acid. However,
under all remaining conditions, citric acid induced a significantly higher calcium loss as compared to HCl.

Discussion
In the present study a superfusion chamber system was used for rinsing enamel samples with the two acids in a laminar flow situation. The chambers of the systems have a small volume of about 0.94 mm³, in which the liquid is flowing over the samples. Due to this small volume it is supposed that a distinct portion of the solution flowing of the samples comes into contact and might react with the superfused enamel. The applied colorimetric method to record mineral loss from the enamel samples allows for determination of minimal amounts of calcium in small acid fractions [14]. The precision of the method was described previously [13]. To confirm the results of the calcium analysis, the acid samples had also been analysed for phosphate showing that result of phosphate and calcium determination were in agreement.

The samples were rinsed with hydrochloric acid and citric acid at pH 2.0, 2.6 and 3.0. The two acids represent a very strong monovalent (hydrochloric acid) and a medium-strong to weak polyvalent (citric acid) acid. Moreover, citric acid was chosen as a typical representative of acidic compounds present in acidic beverages. The chosen pH-values of 2-3 exhibit a range of pH, which was reported to be found at tooth surfaces for a short time period after taking a sip of 1% citric acid [17]. Hydrochloric acid was chosen as it is the acidic compound of gastric juice. Data of measurements of intra-oral pH in patients suffering from reflux or during vomiting attacks with the exposure of gastric acid (HCl) in the oral cavity are not present in literature. In studies dealing with this topic, only length of time span with pH<4 in the oral cavity is reported [18-20]. The minimum pH is not given in those studies. Fasted gastric fluid has a pH of about 1.3, with an increase to pH 4.9 during meal and a drop to pH 2 four hours after having meal [21]. Thus, it can only speculated that the intra-oral pH after vomiting and reflux might also be in the range of the pH chosen for the two acidic solutions.

In the oral cavity two mechanisms might appear within such acidic solutions during drinking. Assuming that the liquid is kept in the oral cavity with very little agitation, saturation with respect to hydroxy apatite accompanied by an increase of pH might occur within the Nernst layer of the solution. In contrast, when the solution is highly
agitated in the oral cavity, the Nernst layer will be replaced by fresh acidic compounds, thus keeping both undersaturation and pH in the Nernst layer low. Since the contact of teeth in the oral cavity with solutions is influenced by various parameters and presents a very complex system, it remains speculation which of these two mechanisms might prevail during drinking of beverages or vomiting. Bovine samples were used as substrate, as they are widely used in erosion research and their chemical and mechanical properties are similar to human dental hard tissues. However, it has taken into account that the susceptibility to erosion might slightly differ between bovine and human substrates [22,23]. A salivary pellicle was not formed on the enamel surface, in order to minimize the variables in the study and to allow focusing on the acids’ behaviour only. However, for extrapolation of the present results to the situation in the oral cavity, it should be borne in mind that absence or presence of salivary pellicle might influence the erosive destruction induced by various acids [15,24-26].

In the experiment flow rates of 10-100 µl/min were chosen, which were possible to apply in the superfusion chamber system with Reynolds numbers distinctly below 1. Thus, these values represent very low rates, assuring laminar flow conditions. As written in the introduction, the study aimed to investigate the erosive behaviour of two different types of acid under non-turbulent conditions, which might occur during slow drinking or holding of an acidic compound in the oral cavity. On the other hand, turbulent conditions were simulated by immersing the enamel samples in vortexed solutions, in which turbulences were obviously visible. However it should be noticed that, to the knowledge of the authors, no information about the exact flow velocities of solutions in contact with tooth surfaces is available. The flow rate in the superfusion chamber was very low as compared to previous studies, also investigating the impact of liquid flow velocity on enamel erosion. Shellis et al. [11] applied flow rates of 26-126 ml/min, which were distinctly higher as compared to the flow rates of 10-100 µl/min used in the present study. Moreover, they have used a circulating system to pump citric acid (pH: 3.2) over enamel samples. A circulating system bears the risk of saturation of the solution due to long-term contact of the solution with the samples. This is in contrast to the present study, in which different types of acids with different pH only ran once over a sample before determining calcium in this solution. Despite those differences in flow rate and experimental set-up, they also found that for a given exposure time, enamel erosive
loss increases with an increasing flow velocity. The same increase in enamel calcium loss with increase in flow velocity results was seen in the present study, when the groups with same exposure times and different flow rates (immersion vs. SC-10, vortex vs. SC-100) were analysed.

Laminar flow conditions and their impact of erosion were also tested in a single experimental group in a study by Eisenburger and Addy [10]. It was found that enamel loss was equivalent to a group subjected to unstirred conditions. However, in this study only a single laminar flow velocity (225 mm/min) and a single acidic solution (citric acid pH 3.2) was tested, thus not allowing to estimate the behaviour of different acidic compounds and pH-values under different laminar flow conditions. We decided to keep the exposure liquid volume constant and to vary the exposure time, by varying the laminar flow velocities. This was done to mimic the situation of a given volume in the oral cavity during drinking of a sip. In order to allow for further comparisons, the time of exposition in the non-agitated group was set equivalent to the duration in the group with the lowest liquid velocity (SC-10). Moreover, exposition time in the vortex group was the same as in the group with the highest velocity (SC-100). This set-up allowed for directly estimating the influence of velocity, showing that an increase in velocity results in an increase of calcium dissolution for both acidic compounds. This finding corroborates the results of previous studies [9-11].

Our experiment also shows that, under the premise of same pH, citric acid might lead to more erosive mineral loss than hydrochloric acid. This was true for nearly all conditions except for groups SC-100 and vortex, in which no difference between the two acids was recorded at pH 3.0 (for both conditions) and 2.6 (for SC-100 only), and except for the immersion groups with pH 3.0. The reason for the more pronounced erosive potential of the citric acid as compared to hydrochloric acid might be explained by the different degrees of dissociation of the two acids at the respective pH-values. In a pilot and unpublished titration experiment, we found that hydrochloric acid is completely dissociated at pH 2.0, 2.6 and 3.0, whereas at those pH-values the trivalent citric acid is only dissociated to about 3.1%, 8.8% and 17.4%, respectively. This means that especially at lower pH, citric acid exhibits a great potential for further dissociation and delivery of H\(^+\)-protons. With increasing flow velocity and decreasing contact time of the acid with the enamel and increase of pH, this particular effect is decreasing or even completely diminished, thus leading to a more or less similar
behaviour of the monovalent hydrochloric acid and the trivalent citric acid. This behaviour might be accompanied by a removal and exchange of the Nemst diffusion layer, diffusion of un-used acidic compounds into this layer or reduced further dissociation of citric acid within this layer. Additionally it is important to notice that citric acid has chelating properties, which allow binding of calcium ions released from the enamel. This effect supports the undersaturation of the solution and is a driving force for further enamel dissolution. Moreover citric acid, as a weak acid, may show some buffer properties. According to the Henderson-Hasselbalch equation, citric acid is therefore able to keep the pH constant, especially at pH ranges close to one of its pKa-values. Thus, it is should be noted that citric acid with pKa₁: 3.13 acted as a buffer under the pH: 2-3 as chosen in the experiment. This effect may also explain its greater erosive potential compared to hydrochloric acid at same pH-values.

The study also shows that the amount of un-dissociated and titrable acid seems to be only important under static conditions and very low flow laminar velocities, and under the premise that a high portion of un-dissociated acid compounds are available. At higher flow velocities, as they are expected during drinking, and a lower portion of un-dissociated acid, i.e. pH > 2.6 for citric acid, the pH seems to be the more important driving force for enamel dissolution.

The results of the present study exhibit that demineralization of enamel samples in a flow model is very complex and does not merely follow the rules of solution equilibrium, which allows calculation of supposed enamel demineralization referring to pH, concentration of mineral salts and temperature (and others) in a static fluid model. Extrapolating the results of this theoretically orientated basic research study to the situation in the oral cavity, during drinking of a beverage, should be done with caution.

In conclusion, the experiment shows that under laminar flow conditions with very low liquid flow velocities, citric acid is more erosive as compared to hydrochloric acid. However, an increase of laminar flow velocity and pH might induce a similar behaviour of these two acidic compounds with respect to enamel dissolution.

Acknowledgement
The authors thank Dr. Malgorzata Roos, Biostatistics Unit, Institute of Social and
Preventive Medicine, University of Zürich, Zürich, Switzerland for help with the statistical analysis of the data.

Conflicts of interest
There are no conflicts of interest for this study.
Tables

Table 1: Flow rate/velocity of the solutions under the different erosive conditions, and duration of treatment for the different specimens, subjected to citric acid or hydrochloric acid of pH 2.0, 2.6 and 3.0 respectively.

<table>
<thead>
<tr>
<th>Erosive conditions</th>
<th>Flow rate, velocity</th>
<th>Time [min]</th>
<th>Hydrochloric acid [pH] (n = 8 per group)</th>
<th>Citric acid [pH] (n = 8 per group)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immersion</td>
<td>0 µl/min</td>
<td>100.0</td>
<td>2.0 2.6 3.0</td>
<td>2.0 2.6 3.0</td>
</tr>
<tr>
<td>SC-10</td>
<td>10 µl/min</td>
<td>100.0</td>
<td>2.0 2.6 3.0</td>
<td>2.0 2.6 3.0</td>
</tr>
<tr>
<td>SC-60</td>
<td>60 µl/min</td>
<td>16.7</td>
<td>2.0 2.6 3.0</td>
<td>2.0 2.6 3.0</td>
</tr>
<tr>
<td>SC-100</td>
<td>100 µl/min</td>
<td>10.0</td>
<td>2.0 2.6 3.0</td>
<td>2.0 2.6 3.0</td>
</tr>
<tr>
<td>Vortex</td>
<td>600 rpm</td>
<td>10.0</td>
<td>2.0 2.6 3.0</td>
<td>2.0 2.6 3.0</td>
</tr>
</tbody>
</table>

Table 2: Mean (standard deviation) calcium loss [nmol/ml] in enamel samples treated with hydrochloric and citric acid of pH 2.0, 2.6 and 3.0, and subjected to different erosive conditions.

<table>
<thead>
<tr>
<th>Erosive conditions</th>
<th>Hydrochloric acid</th>
<th>Citric acid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH 2.0 2.6 3.0</td>
<td>2.0 2.6 3.0</td>
</tr>
<tr>
<td>Immersion</td>
<td>490 (177)</td>
<td>1577 (155)</td>
</tr>
<tr>
<td>SC-10</td>
<td>909 (69)</td>
<td>2137 (642)</td>
</tr>
<tr>
<td>SC-60</td>
<td>390 (64)</td>
<td>889 (102)</td>
</tr>
<tr>
<td>SC-100</td>
<td>398 (70)</td>
<td>501 (46)</td>
</tr>
<tr>
<td>Vortex</td>
<td>682 (141)</td>
<td>1274 (99)</td>
</tr>
</tbody>
</table>

* Values indicated by an asterisk are not statistically significantly different with respect to comparison of hydrochloric acid vs. citric acid at same pH.
References

