An environmentally benign and cost-effective synthesis of Aminoferrocene and Aminoruthenocene

Leonidova, Anna; Joshi, Tanmaya; Nipkow, David; Frei, Angelo; Penner, Johanna-Elena; Konatschnig, Sandro; Patra, Malay; Gasser, Gilles

Abstract: An improved synthesis of aminoferrocene has been carried out that adheres with the basic green chemistry guidelines. Amination from aqueous NH3 as the nitrogen source, with the inexpensive CuI/Fe2O3 couple as cocatalyst in ethanolic solution, makes the process environmentally attractive as well as a viable alternative for all practical purposes. This procedure has also been applied to prepare aminoruthenocene, being reported for the first time.

DOI: https://doi.org/10.1021/om400009g

Posted at the Zurich Open Repository and Archive, University of Zurich

ZORA URL: https://doi.org/10.5167/uzh-86411

Accepted Version

Originally published at:
Leonidova, Anna; Joshi, Tanmaya; Nipkow, David; Frei, Angelo; Penner, Johanna-Elena; Konatschnig, Sandro; Patra, Malay; Gasser, Gilles (2013). An environmentally benign and cost-effective synthesis of Aminoferrocene and Aminoruthenocene. Organometallics, 32(6):2037-2040.
DOI: https://doi.org/10.1021/om400009g
An Environmentally Benign and Cost-Effective Synthesis of Aminoferrocene and Aminoruthenocene

Anna Leonidova,a,# Tanmaya Joshi,a,# David Nipkow,a,# Angelo Frei,a,# Johanna-Elena Penner,a Sandro Konatschnig,a Malay Patra,a and Gilles Gasser*a

[a] Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to)

Keywords: Organometallic Chemistry, Ferrocene, Ruthenocene, Catalysis, Green Chemistry,
Abstract

An improved synthesis of aminoferrrocene has been carried out adhering with the basic green chemistry guidelines. Amination from aqueous NH₃ as nitrogen source, with inexpensive CuI/Fe₂O₃ couple as co-catalyst in ethanolic solution makes the process environmentally attractive as well as a viable alternative for all practical purposes. This procedure has also been applied to prepare aminoruthenocene, being reported for the first time.
Introduction

As surprising as it can be, very simple and routinely used aminocyclopentadienyl organometallic derivatives are either not commercially available or extremely expensive. For example, 1g of aminoferrocene, which can be considered as the simplest amino-containing organometallic complex, costs more than 330 Euro!\(^1\) This, we believe, is due to a dearth of industrially scalable procedures that meet demands for producing such a compound in a cost-effective manner. As such, over the last sixty years, several synthetic routes have been developed for laboratory preparation of aminoferrocene. To highlight a few relevant methods, historically, the first synthesis of aminoferrocene was reported by Arimoto *et al.* in 1955.\(^2\) In this procedure, ferrocene carboxylic acid was first reacted with PCl\(_5\) in benzene and then with NaN\(_3\) in acetone to form ferrocenoyl azide (reaction A in Scheme 1). The desired aminoferrocene was finally obtained via Curtius rearrangement and subsequent removal of the benzyl formate group. In 2002, Butler *et al.* reported a further improvement to this synthesis where use of milder conditions afforded a better yield from a similar synthetic pathway.\(^3\) Earlier to this, in 1983, Herberhold *et al.* proposed a slightly modified strategy involving the preparation of N-ferrocenylamide, which can be transformed to aminoferrocene under basic conditions (reaction B in Scheme 1).\(^4\) Another approach was proposed by Knox *et al.* in 1990. It involved first n-butyllithium mediated lithiation of ferrocene and then the reaction of the monolithiated ferrocene with O-benzylhydroxylamine (reaction C in Scheme 1). However, the post acid treatment yielded only a relatively small amount of the desired aminoferrocene.\(^5\) Bildstein *et al.* reported in 1999 another optimized and high-yielding synthetic pathway involving the sequence ferrocene - solid monolithioferrocene – iodoferrocene – ferrocenyl phthalimide – aminoferrocene based on the initial work from Sato, Nesmeyanov and co-workers.\(^6-8\) This procedure was later slightly
modified by Heinze et al.9 More specifically, in this method, iodoferrocene, which can be obtained from readily available ferrocene, is used as the starting material. Coupling of iodoferrocene with copper phthalimide gave ferrocenyl phathlimide, which was converted to aminoferrocene via Gabriel synthesis (reaction D in Scheme 1). Another widely utilized method for making aminoferrocene involves the preparation of azidoferrocene from bromoferrocene and its subsequent reduction with LiAlH\textsubscript{4}10 or by hydrogenation (reaction E in Scheme 1).11 Even though this hydrogenation approach has only been used to synthesize 1,1'-diaminoferrocene from 1,1'-dibromoferrocene via 1,1'-diazidiferrocene,11 it can be anticipated that it would also work for the monosubstituted ferrocene. However, the procedure presents a major drawback as azidoferrocene can potentially be explosive – 1,1'-diazidoferrocene is prone to explosion if heated rapidly above 56 °C.11 In 2001, van Leusen \textit{et al.} proposed a two-step strategy involving first the deprotonation of ferrocene and then the use of α-azidostyrene (reaction F in Scheme 1).12 However, the latter is not commercially available and the preparation requires a three-step synthetic route.

Hence, to summarize, the best available procedures for aminoferrocene synthesis require either several synthetically challenging steps, are low-yielding or involve the preparation of potentially explosive intermediates. Considering the potential of ferrocene in a multitude of research areas,13 there is definitively a need for a simple and efficient synthetic pathway for preparing aminoferrocene and, more generally, for organometallic aminocyclopentadienyl derivatives. To emphasize the importance of such small amino-functionalized ferrocenyl compounds, it has to be reminded that they have already been used, for example, as building blocks for the preparation of ferrocenyl peptide bioconjugates as well as aminoferrocene based prodrugs.14-20 One such conjugate showed potential for the electrochemical sensing of chemical warfare agent mimics.19-
Over the recent years, such small organometallic constructs have also been used as inserts for parent organic drugs to prepare novel organometallic-based antiparasitic and anticancer drug candidates.21-22

Herein, we report, to the best of our knowledge, the most environmentally-friendly and economically attractive synthesis of aminoferrocene and aminoruthenocene from corresponding mono-substituted iodo precursors using aqueous ammonia and an iron/copper co-catalyst system (Scheme 2).

Scheme 1. Non-exhaustive list of synthetic procedures to prepare aminoferrocene. A) Synthesis proposed by Arimoto et al.2 (i) 1. PCl\textsubscript{5}, benzene; 2. NaN\textsubscript{3}, Acetone; (ii) Phenylmethanol; (iii) NaOH (10 %); B) Synthesis proposed by Herberhold et al.4 (i) 1. PCl\textsubscript{5}, benzene; 2. NaN\textsubscript{3}, Acetone; (ii) Acetic anhydride; (iii) KOH (10 %); C) Synthesis proposed by Knox et al.5 (i) 1. \textit{n}-BuLi, Et\textsubscript{2}O; 2. benzylhydroxylamine; 3. HCl/H\textsubscript{2}O; D) Synthesis proposed by Heinze et al.9 (i)
Copper phthalimide; (ii) N\textsubscript{2}H\textsubscript{4}.H\textsubscript{2}O; E) Synthesis proposed by Arnold et al.11 (i) NaN\textsubscript{3}, CuCl, EtOH/H\textsubscript{2}O; (ii) H\textsubscript{2}, Pd/C (5 % Pd), MeOH; F) Synthesis proposed by van Leusen et al.12 (i) t-BuLi, THF; (ii) 1. α-azidostyrene; 2. HCl/H\textsubscript{2}O.

Results and Discussion

As described in Scheme 2, the synthetic strategy that we report herein for aminoferrocene synthesis involves the preparation of iodoferrocene from ferrocene and its corresponding amination using aqueous ammonia. For this, the iodoferrocene precursor was easily prepared following the recently reported procedure from Goeltz and Kubiak.23 Inspired by the recent report by Wu and Darcel, which describes a ligand-free iron/copper-co-catalyzed amination of aryl iodides with aqueous ammonia,24 we could successfully optimize the reaction conditions to isolate aminoferrocene in 65 % yield after purification. To the best of our knowledge, this is the simplest route reported so far for preparing aminoferrocene. Furthermore, use of cheap co-catalysts (iron and copper salts), ethanol as solvent and aqueous ammonia for nitrogen source, makes the procedure environmentally-friendly as well as economically attractive, even for industrial purposes.24 Of note, we also assessed the possibility of employing similar copper(I) iodide mediated Ullmann-type coupling as reported by Bolm and co-workers for the preparation of nitrogen-substituted ferrocenes.25 While aminoferrocene could still be obtained following this approach, addition of co-catalyst, iron(III) oxide, however, results in a 2-fold increase in the reaction yield. A similar improvement in reaction yields was also observed by Wu and Darcel for amination of aryl iodides.24 The iron/copper co-catalyst system allowed us to use ethanol/water as solvent instead of dimethylsulfoxide (DMSO) hence avoiding the use of Schlenk techniques (quite frequently employed in synthetic organometallic chemistry), and shortening the reaction time from 16 to 6 hours in comparison with the conditions originally reported by Bolm and co-
workers. Furthermore, in absence of any sodium hydroxide, only a slight decrease in reaction yield (ca. 10 %) was observed for a 100-fold excess of ammonia solution being used.

![Scheme 2](image)

Scheme 2. Aminoferrocene and Aminoruthenocene synthesis proposed by our group. (i) t-BuLi, I₂, THF;²³,²⁶ (ii) NH₃ (aq), CuI (10 mol %), Fe₂O₃ (10 mol %), NaOH, EtOH, 90 °C.

Encouraged by the excellent results obtained for aminoferrocene, taking a step further, we also attempted the preparation of its heavier homologue, aminoruthenocene, via a similar pathway. As expected, the desired product was successfully isolated, in 60 % yield, with no further chromatographic purification. The identity of the product was established by ¹H and ¹³C NMR spectroscopy, IR spectroscopy, ESI-MS and high resolution mass spectrometry (HRMS). The ¹H NMR spectra showed multiplets between 4.10-4.40 ppm, characteristically assigned to the mono-substituted ruthenocene, a broad signal at 3.07 ppm ascribable to the –NH₂ group, and signals for the corresponding carbons in the ¹³C NMR spectra. Signal at m/z = 248.0 for the corresponding [M+H]+ ion observed in ESI-MS further confirmed the formation of the desired aminoruthenocene product.

Conclusion

In summary, in this work, we present a remarkable improvement over the methodologies available for preparation of aminoferrocene. The applied synthetic route is, to the best of our
knowledge, the most direct pathway reported thus far in the literature. Importantly, the use of inexpensive CuI/Fe$_2$O$_3$ couple as co-catalysts and of NH$_3$(aq)/EtOH as reaction medium make this procedure an environmentally-friendly and cost-effective route. Moreover, using aminoruthenocene as an example, we could successfully show that scope of this amination strategy can potentially be extended to prepare other small organometallic building blocks, further adding to its advantage over existing protocols.

Experimental section.

Materials. All chemicals were of reagent grade quality or better, obtained from commercial suppliers and used without further purification. Solvents were used as received or distilled using standard procedures. Thin layer chromatography (TLC) was performed using silica gel 60 F-254 (Merck) plates with detection of spots being achieved by exposure UV light. Column chromatography was done using Silica gel 60 (0.040-0.063 mm mesh, Merck). Eluent mixtures are expressed as volume to volume (v/v) ratios. Iodoferrocene (2a) and iodoruthenocene (2b) were synthesised according to literature procedures.

Instrumentation and methods. 1H and 13C NMR spectra were recorded in deuterated solvents on AV2-401 spectrometer, at room temperature. The chemical shifts, δ, are reported in ppm (parts per million). The signals from the residual protons of deuterated solvent have been used as an internal reference. The abbreviations for the peak multiplicities are as follows: s (singlet), d (doublet), dd (doublet of doublets), t (triplet), q (quartet), m (multiplet), and br (broad). ESI mass spectrometry was performed using a Bruker Esquire 6000 spectrometer. In the assignment of the mass spectra, the most intense peak is listed. High-resolution accurate mass spectra were recorded with Bruker maXis QTof high-resolution mass spectrometer (Bruker Daltonics,
Infrared spectra were recorded on Perkin-Elmer FTIR spectrometer fitted with an ATR platform. Peak intensities are given as broad (b), very strong (vs), strong (s), medium (m) and weak (w).

Synthesis.

Aminoferrocene (3a): Iodoferrocene (0.10 g, 0.32 mmol) was dissolved in EtOH (3 mL). Copper iodide (6.0 mg, 0.032 mmol), Fe₂O₃ (5.0 mg, 0.032 mmol) and NaOH (30 mg, 0.75 mmol) were added to the solution. Aqueous ammonia (13.5 M, 1.5 mL) was added to the resulting red solution and the reaction mixture was heated at 90 °C for 6 hours in a pressure-proof vessel. The reaction mixture was cooled to room temperature and diethyl ether (50 mL) was added. The organic phase was then washed with 1 M aqueous NaOH (3 × 50 mL), dried over anhydrous MgSO₄, filtered and evaporated to dryness to obtain the crude product, which was purified by silica gel column chromatography (SiO₂, eluent gradient gradually changed from hexane:EtOAc 1:1 to hexane:EtOAc 1:4) to obtain 3a as a yellow-orange solid. Yield: 42 mg (65 %). \(R_f = 0.38 \) in hexane:EtOAc 1:4. The analytical data for 3a matched with that previously reported.³

Aminoruthenocene (3b): Compound 3b was prepared following a procedure similar to that described for 3a, using iodoruthenocene (0.17 g, 0.47 mmol), copper iodide (8.9 mg, 0.047 mmol), Fe₂O₃ (7.5 mg, 0.047 mmol) and NaOH (47 mg, 1.18 mmol), and aqueous ammonia (13.5 M, 2.1 mL) in EtOH (8 mL). The reaction mixture was cooled to room temperature, diethyl ether (70 mL) was added and the ethereal solution was washed with 10 mM phosphate buffer (pH 7.01) (2 × 25 mL). The organic phase was extracted with water (2 × 15 mL) acidified to pH
3.0 using 1M HCl), freeze-dried to obtain hydrochloride salt of 3b as a off-white solid. The hydrochloride salt was dissolved in water (10 mL) and the pH of the aqueous solution was adjusted between 7-8 using 1M NaOH. After extraction with dichloromethane (3 × 35 mL), the organic phase was dried over Na2SO4 and filtered. The filtrate was concentrated under reduced pressure to obtain an analytically pure sample of aminoruthenocene as yellowish black solid.30 Yield: 69 mg (60%). Anal. calcd. for C10H12ClNRu (%): C, 42.48; H, 4.28; N, 4.95. Found: C, 42.66; H, 4.52; N, 4.86. IR (ATR): ν 3405w (N-H), 3281w, 3087s (C-H), 2925w (C-H), 1494vs, 1408m, 1255s, 1099s, 995s, 799vs cm⁻¹. ¹H NMR (400 MHz, THF-d₈): δ 4.41-4.40 (m, 2H, C₅H₄), 4.38 (s, 5H, C₅H₅), 4.11-4.10 (m, 2H, C₅H₄), 3.07 (br s, 2H, -NH₂) ppm. ¹³C NMR (100 MHz, THF-d₈): δ 112.2, 70.9, 65.9, 62.1 ppm. MS (ESI⁺): m/z 248.0 [M+H]⁺. HR-ESI mass spectrum (methanol + NaI): found 248.00045; calcd. for [C10H12NRu]/z 248.00077.

ASSOCIATED CONTENT

Supporting Information. ¹H and ¹³C NMR spectra (Figures S1-S2) and ESI-MS of 3b (Figure S3). This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding author: Email: gilles.gasser@aci.uzh.ch; Fax: +41 44 635 6803; Tel: +41 44 635 4630; WWW: www.gassergroup.com.

ACKNOWLEDGEMENTS

This work was financially supported by the Swiss National Science Foundation (SNSF Professorship PP00P2_133568 and Research Grant No. 200021_129910 to G.G.) and the University of Zurich (G.G.).
Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. These authors contributed equally.

References

30. **Note**: Slow decomposition of aminoruthenocene in halogenated solvents was observed in the presence of light. Therefore, as much as possible, the workup procedure should be carried out in absence of light and prolonged suspension of aminoruthenocene in halogenated solvents should also be avoided. To increase lifetime of aminoruthenocene, their storage as hydrochloride salt below -20 °C is recommended.
An Environmentally Benign and Cost-Effective Synthesis of Aminoferrocene and Aminoruthenocene

Adhering with the basic green chemistry guidelines, an environmentally friendly and practically viable alternative synthesis of aminoferrocene and aminoruthenocene has been reported.