Header

UZH-Logo

Maintenance Infos

Caerulein-induced acute pancreatitis in mice that constitutively overexpress Reg/PAP genes


Norkina, O; Graf, R; Appenzeller, P; De Lisle, R C (2006). Caerulein-induced acute pancreatitis in mice that constitutively overexpress Reg/PAP genes. BMC Gastroenterology, 6:16.

Abstract

BACKGROUND: The cystic fibrosis (CF) mouse pancreas has constitutively elevated expression of the Reg/PAP cell stress genes (60-fold greater Reg3alpha, and 10-fold greater PAP/Reg3beta and Reg3gamma). These genes are suggested to be involved in protection or recovery from pancreatic injury. METHODS: To test this idea the supramaximal caerulein model was used to induce acute pancreatitis in wild type and CF mice. Serum amylase, pancreatic water content (as a measure of edema), pancreatic myeloperoxidase activity, and Reg/PAP expression were quantified. RESULTS: In both wild type and CF mice caerulein induced similar elevations in serum amylase (maximal at 12 h), pancreatic edema (maximal at 7 h), and pancreatic myeloperoxidase activity (MPO, a marker of neutrophil infiltration; maximal at 7 h). By immunohistochemistry, Reg3alpha was strongly expressed in the untreated CF pancreas but not in wild type. During pancreatitis, Reg3alpha was intensely expressed in foci of inflamed tissue in both wild type and CF. CONCLUSION: These data demonstrate that the severity of caerulein-induced pancreatitis is not ameliorated in the CF mouse even though the Reg/PAP stress genes are already highly upregulated. While Reg/PAP may be protective they may also have a negative effect during pancreatitis due to their anti-apoptotic activity, which has been shown to increase the severity of pancreatitis.

Abstract

BACKGROUND: The cystic fibrosis (CF) mouse pancreas has constitutively elevated expression of the Reg/PAP cell stress genes (60-fold greater Reg3alpha, and 10-fold greater PAP/Reg3beta and Reg3gamma). These genes are suggested to be involved in protection or recovery from pancreatic injury. METHODS: To test this idea the supramaximal caerulein model was used to induce acute pancreatitis in wild type and CF mice. Serum amylase, pancreatic water content (as a measure of edema), pancreatic myeloperoxidase activity, and Reg/PAP expression were quantified. RESULTS: In both wild type and CF mice caerulein induced similar elevations in serum amylase (maximal at 12 h), pancreatic edema (maximal at 7 h), and pancreatic myeloperoxidase activity (MPO, a marker of neutrophil infiltration; maximal at 7 h). By immunohistochemistry, Reg3alpha was strongly expressed in the untreated CF pancreas but not in wild type. During pancreatitis, Reg3alpha was intensely expressed in foci of inflamed tissue in both wild type and CF. CONCLUSION: These data demonstrate that the severity of caerulein-induced pancreatitis is not ameliorated in the CF mouse even though the Reg/PAP stress genes are already highly upregulated. While Reg/PAP may be protective they may also have a negative effect during pancreatitis due to their anti-apoptotic activity, which has been shown to increase the severity of pancreatitis.

Statistics

Citations

12 citations in Web of Science®
15 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

129 downloads since deposited on 11 Feb 2008
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Visceral and Transplantation Surgery
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2006
Deposited On:11 Feb 2008 12:12
Last Modified:28 Aug 2017 11:21
Publisher:BioMed Central
ISSN:1471-230X
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1471-230X-6-16
PubMed ID:16700916

Download

Download PDF  'Caerulein-induced acute pancreatitis in mice that constitutively overexpress Reg/PAP genes'.
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)