Contribution of spinal cord biopsy to diagnosis of aquaporin-4 antibody positive neuromyelitis optica spectrum disorder

Neuromyelitis Optica Study Group (NEMOS); Metz, I; Ringelstein, M; Ruprecht, K; et al; Schippling, S

Abstract: Longitudinally extensive transverse myelitis is characteristic but not pathognomonic for neuromyelitis optica spectrum disorders (NMOSDs) and may mimic local tumors. In this retrospective study based on a cohort of 175 NMOSD patients we identified seven patients who initially presented with a longitudinally extensive spinal cord lesion and underwent spinal cord biopsy due to magnetic resonance imaging (MRI)-suspected malignancies. Remarkably, routine neuropathology was inconclusive and did not guide the diagnostic process to anti-aquaporin-4 (AQP4)-seropositive NMOSD. Serious postoperative complications occurred in 5/7 patients and persisted during follow-up in 2/7 patients (29%). Considering these sequelae, AQP4-antibody testing should be mandatory in patients with inconclusive longitudinally extensive spinal cord lesions prior to biopsy.

DOI: https://doi.org/10.1177/1352458513510981

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-87274
Accepted Version

Originally published at:
Neuromyelitis Optica Study Group (NEMOS); Metz, I; Ringelstein, M; Ruprecht, K; et al; Schippling, S (2014). Contribution of spinal cord biopsy to diagnosis of aquaporin-4 antibody positive neuromyelitis optica spectrum disorder. Multiple Sclerosis, 20(7):882-888.
DOI: https://doi.org/10.1177/1352458513510981
Contribution of spinal cord biopsy to diagnosis of aquaporin-4 antibody positive neuromyelitis optica spectrum disorder

M Ringelstein¹, I Metz², K Ruprecht³, A Koch⁴, J Rappold⁵, J Ingwersen¹, C Mathys⁶, S Jarius⁷, W Brück², H-P Hartung¹, F Paul⁸, O Aktas¹ for the Neuromyelitis Optica Study group (NEMOS)*

(1) Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
(2) Department of Neuropathology, University Hospital Göttingen, Göttingen, Germany
(3) Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
(4) Department of Neuropathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
(5) Department of Neurology, Landesklinikum Thermenregion Hochegg, Hochegg, Austria
(6) Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
(7) Division of Molecular Neuroimmunology, Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
(8) NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany

* Case contributors to the NEMOS consortium are listed in the Acknowledgments.

Keywords: Spinal cord tumor, LESCL, spinal biopsy, LETM, neuromyelitis optica, aquaporin-4 antibody

Address for correspondence: Orhan Aktas, MD, Department of Neurology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany, Moorenstraße 5, 40225 Düsseldorf, Phone: +49-211/81-18464, Fax: +49-211/81-18469, email: orhan.aktas@uni-duesseldorf.de.
Abstract
Longitudinally extensive transverse myelitis is characteristic but not pathognomonic for neuromyelitis optica spectrum disorders (NMOSD) and may mimic local tumors. In this retrospective study based on a cohort of 175 NMOSD patients we identified 7 cases who initially presented with a longitudinally extensive spinal cord lesion and underwent spinal cord biopsy due to MRI-suspected malignancies. Remarkably, routine neuropathology was inconclusive and did not guide the diagnostic process to anti-aquaporin-4 (AQP4)-seropositive NMOSD. Serious postoperative complications occurred in 5/7 patients and persisted during follow-up in 2/7 patients (29%). Considering these sequelae, AQP4-antibody testing should be mandatory in patients with inconclusive longitudinally extensive spinal cord lesions prior to biopsy.
Introduction

Neuromyelitis optica (NMO) is an inflammatory demyelinating autoimmune disease with the key features optic neuritis (ON) and longitudinally extensive transverse myelitis (LETM), characterized by a spinal cord MRI lesion ≥ 3 vertebral segments.\(^1,2\) However, LETM is not pathognomonic for NMO spectrum disorders (NMOSD),\(^1\) as longitudinally extensive spinal cord lesions (LESCL) can be observed with coexisting systemic autoimmune diseases, infections, vascular and metabolic disorders, and following irradiation.\(^3-5\) Moreover, intramedullary tumors or paraneoplastic myelopathies may present as LESCL and thus mimic NMO-associated LETM.\(^3,4\) Usually, clinical history and presentation, neuroimaging findings as well as cerebrospinal fluid (CSF) and serological tests guide the diagnostic work-up of NMOSD,\(^6,7\) particularly after the recent discovery of highly specific anti-aquaporin4-antibodies (AQP4-Ab).\(^8\) However, in rare cases the identification of the underlying pathology is difficult, rendering spinal cord biopsy with potentially serious sequelae an ultimate means to rule out malignancies. Here, we retrospectively investigated the incidence and diagnostic value of spinal cord biopsy as well as the subsequent clinical outcome within a recently reported cohort of NMOSD patients.\(^7\)

Methods

To identify NMOSD patients who underwent spinal cord biopsy we used the German Neuromyelitis Optica Study Group as previously described [www.nemos-net.de].\(^9\) At the time of analysis, 175 NMOSD cases as defined by Wingerchuk and colleagues (2007)\(^1\) had been captured.\(^7\) Patients who underwent biopsy had been transferred for follow-up from neurosurgical and neurological hospitals to the Departments of Neurology in Düsseldorf or Berlin, Germany, and Hochegg, Austria, respectively. We were able to perform a neuropathological reevaluation in 4/7 cases, using the original biopsy specimen. The study was approved by the local ethics committees, and all patients gave written informed consent.
Results

We identified seven female NMOSD patients with a prior history of diagnostic spinal biopsy, 6 of Caucasian, 1 of Afro-American origin, while the other patients of our cohort did not undergo spinal biopsy. None of the patients had a prior brain biopsy. The median age was 40 years (range 24-52) at first clinical presentation and 43 years (range 29-57) at LETM/biopsy. LETM was the initial manifestation in 4 patients, 3 patients had experienced an inflammatory episode suggestive of NMOSD prior to biopsy (optic neuritis or rhombencephalitis; Table). Suspected diagnoses leading to biopsy 84 days after clinical onset (mean; range 8 days-10 months) included “astrocytoma”, “atypical pen-like glioma”, “tumor of unknown etiology”, “spinal tumor” and “intramedullary tumor”. Spinal MRI showed non-homogeneous gadolinium enhancement (in 6/7 patients) with pronounced myelon swelling between the medulla oblongata and Th9 (range), extending >6 segments (mean, range 4-15; Figure). Brain MRI prior to biopsy was normal in 4/7 patients or revealed unspecific white matter lesions in 3/7 cases. CSF analysis showed mild (5/7 patients) or moderate pleocytosis (2/7 patients) and isolated oligoclonal bands in one patient (Table).

Remarkably, initial histopathological diagnoses did not suggest an NMO-related process but were reported as 1) “inflammatory destructive lesion”, 2) “glial tumor with desmoplastic and angiogenic compound of low malignancy”, 3) “angiodysgenetic necrotizing myelopathy Foix-Alajouanine”, 4) “subacute necrosis, no tumor”, 5) “tumor-free spinal cord”, 6) “CNS tissue with severe reactive and resorptive changes, no neoplasia” and 7) “reactive CNS tissue with inflammation and resorptive changes” (Table).

Reevaluation of four available biopsies was limited by the small sample size and numbers of sections. Demyelination was evident in all cases. Inflammation (CD3), extensive axonal damage (Bielschowsky silver impregnation) and hyalinized vessels were evident in 3/3 biopsies. Perivascular complement depositions were not found (0/3; C9neo) and complement
within macrophages was evident in one case (1/3; C9neo). Only in one biopsy were eosinophilic granulocytes present. Both of the 2 cases in which GFAP and AQP4 could be stained showed astrocytic dystrophy and loss as well as loss of AQP4. Oligodendrocytes (NOGO-A or CNPase staining) were depleted in 2/2 biopsies (see supplemental Figure).

All patients were AQP4-seropositive when tested after biopsy using cell-based assays. The final diagnoses were NMO (4/7) and NMO-related LETM (3/7) at an average of 68.4 months (range 0.5-160) after initial symptoms and 30.3 months (range 0.25-103.5) after biopsy (Table). Notably, 3 patients were biopsied before AQP4-Ab testing was routinely available (one in 1995, two in 2002). Testing was available but not performed before surgery in all other cases. Median EDSS prior to biopsy was 4.0 (range 2.5-8.0) and 8.0 (range 3.0-8.5) in the first few days thereafter, due to severe complications like CSF leakage, epidural hematoma (Figure), and postoperative spinal trauma in 5/7 patients. Biopsy-related deterioration persisted in 2/7 patients, with an elevated EDSS score of 7.5 (median; range 2.0-8.5) at last follow-up (mean 86.6 months after spinal biopsy; range 20-218).

Discussion

Undoubtedly, CNS biopsy represents the ultimate diagnostic step for evaluation of an unclear tissue alteration such as a longitudinally extensive spinal cord lesion. NMO histopathology in general is characterized by inflammatory, often destructive, demyelinating lesions with perivascular immunoglobulin G and complement deposition, hyalinized vessels and eosinophilic granulocytes. An astrocytic pathology with AQP4 loss extending beyond the area of demyelination is typical and oligodendrocytes may be lost within lesions. However, invasive biopsy procedures may have adverse effects, particularly in the inflamed spinal cord. Moreover, in this case series, initial routine histopathology excluded tumors in 6/7 patients (Table), but did not lead to the correct diagnosis. Five patients experienced transient postoperative complications shortly after biopsy, leading to persistent, severe paraparesis in
one patient and permanent tetraparesis with wheelchair dependence in another. Obviously the proportion of severe post-operative complications was relatively high in our study, possibly due to the central localization of the spinal lesions as well as their inflammatory nature, leading to local hyperemia and thus an increased susceptibility to unintended bleeding events and edema. NMO-related LETM was only recognized after detection of NMO-IgG. Although histopathological reevaluation in 4 patients revealed some typical NMO features, a definite diagnosis was challenging despite familiarity with the AQP4 serostatus as certain neuropathological findings typical of NMO like perivascular depositions of activated complement were not detectable. This observation is in line with previous reports suggesting heterogeneity of NMO lesions according to lesion stage, biopsy site and the paucity of typical spinal specimen.10,11

Our report confirms and extends a previous single case report,12 but has several limitations. The analysis is retrospective, and the patients were not recruited from a random population of patients with spinal lesions including confirmed cases of glioma but from a recently described cohort of NMOSD patients.7 Moreover, 3/7 patients were biopsied in 1995 and 2002 before the availability of NMO-IgG measuring.8 However, our findings emphasize the importance of NMO-IgG testing for LETM. Considering the possible adverse effects of biopsy procedures, testing for NMO-IgG is justified in patients with unclear spinal cord tumors. In light of the heterogeneity of available assays and the low prevalence of NMOSD, a detection method with sufficient sensitivity and specificity should be used.13 Biopsy of longitudinally extensive spinal lesions should be limited to cases in which other tests only provide inconclusive diagnostic findings.
Acknowledgements

The following members of the Neuromyelitis Optica Study (NEMOS) group have contributed cases with NMO or NMO spectrum diseases to the original source data file (alphabetical listing according to site):

- Stefan Langel, MD. Department of Neurology, Rheinhessen-Fachklinik Alzey, Alzey, Germany
- Ulrich Hofstadt-van Oy, MD, and Reinhard Reuss, MD. Department of Neurology, Bayreuth Hospital, Bayreuth, Germany
- Christian Wilke, MD. Nervenzentrum, Potsdam, Germany
- Christoph Münch, MD. Department of Neurology, Charité-University Medicine Berlin, Campus Virchow, Berlin, Germany
- Kerstin Hellwig, MD, and Ingo Kleiter, MD. Department of Neurology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
- Sabine Niehaus, MD. Department of Neurology, Dortmund Hospital, Dortmund, Germany
- Arthur Melms, MD, and Ralf Linker, MD. Department of Neurology, Friedrich-Alexander University Erlangen, Erlangen, Germany
- Christoph Mayer, MD. Department of Neurology, Goethe University Frankfurt, Frankfurt/Main, Germany
- Kersten Guthke, MD. Department of Neurology, Görlitz Hospital, Görlitz, Germany
- Hannah Pellkofer, MD. Department of Neurology, University of Göttingen, Göttingen, Germany
- Frank Hoffmann, MD, and Christian Zentner, MD. Department of Neurology, Martha Maria Hospital, Halle/Saale, Germany
Martin Stangel, MD, and Corinna Trebst, MD. Department of Neurology, Hannover Medical School, Hannover, Germany

Brigitte Wildemann, MD. Department of Neurology, University of Heidelberg, Heidelberg, Germany

Christian Geis, MD, Department of Neurology, University of Jena, Jena, Germany

Barbara Ettrich, MD, and Florian Then Bergh, MD. Department of Neurology, University of Leipzig, Leipzig, Germany

Klaus-Peter Wandinger, MD. Department of Neurology, University of Lübeck, Lübeck, Germany

Achim Berthele, MD, and Bernhard Hemmer, MD. Department of Neurology, Technische Universität München, Munich, Germany

Tania Kümpfel, MD. Institute for Clinical Neuroimmunology, Ludwig-Maximilians-University, Munich, Germany

Martin Marziniak, MD. Department of Neurology, kbo-Isar-Amper-Klinikum München-Ost, Munich, Germany

Tobias Böttcher, MD. Department of Neurology, Dietrich Bonhoeffer Klinikum Neubrandenburg, Neubrandenburg, Germany

Paulus Stefan Rommer, MD, Alexander Winkelmann, MD, and Uwe Zettl, MD. Department of Neurology, University of Rostock, Rostock, Germany

Oliver Neuhaus, MD. Department of Neurology, Sigmaringen Hospital, Sigmaringen, Germany

Jörn-Peter Sieb, MD, and Christian Veauthier, MD. Department of Neurology, Helios Hanseklinikum Stralsund, Stralsund, Germany
• Jürgen Faiss, MD, and Peter Kern, MD. Department of Neurology, Asklepios Hospital Teupitz, Teupitz, Germany
• Ulf Ziemann, MD. Department of Neurology, University of Tübingen, Tübingen, Germany
• Hayrettin Tumani, MD, Florian Lauda, MD, and Johannes Brettschneider, MD. Department of Neurology, University of Ulm, Ulm, Germany
• Martin Liebetrau, MD. Department of Neurology, Dr. Horst Schmidt Hospital, Wiesbaden, Germany
• Christoph Kleinschnitz, MD. Department of Neurology, University of Würzburg, Würzburg, Germany
• Sven Schippling, MD. Department of Neurology, University of Zürich, Zürich, Switzerland

The MS center at the Department of Neurology, Heinrich-Heine-University Düsseldorf, is supported in part by the Walter-and-Ilse-Rose-Stiftung (to O.A. and H.-P.H.), the Eugène Devic European Network (E-rare/EU-FP7; to O.A. and H.-P.H.), and the German Ministry for Education and Research (BMBF, "German Competence Network Multiple Sclerosis", KKNMS-BMBF; to H.-P.H. and W.B.). This study was supported by grants from the German Research Foundation (DFG Exc 257). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Conflict of Interest Statement

- Marius Ringelstein received speaker honoraria from Novartis and travel reimbursement from Bayer Schering.
- Imke Metz received grants by Heidenreich von Siebold Program and the University Medical Center, Georg August University, Göttingen, Germany, and honoraria for lectures and travel/accommodations/meeting expenses from TEVA, Biogen Idec, Sanofi-Aventis and Bayer Health Care.
- Klemens Ruprecht received research support from Novartis as well as speaking fees and travel grants from Bayer HealthCare, Biogen Idec, Merck Serono, Sanofi-Aventis, and Novartis.
- Arend Koch reports no disclosures.
- Johann Rappold reports no disclosures.
- Jens Ingwersen reports no disclosures.
- Christian Mathys reports no disclosures.
- Sven Jarius was supported by a Fellowship from the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) and by research grants from Merck Serono and Bayer HealthCare.
- Wolfgang Brück received grants by the German Ministry for Education and Research and the Competence Network Multiple Sclerosis and honoraria for consultancy, lectures and travel/accommodations/meeting expenses from TEVA Pharma, Biogen Idec, Novartis, Bayer Schering, Sanofi-Aventis and Merck-Serono.
- Hans-Peter Hartung received grants by Walter-and-Ilse-Rose-Stiftung, Eugène Devic European Network (EU-FP7) and the German Ministry for Education and Research,
received honoraria for consultancy by Bayer Health Care, Biogen Idec, Genzyme, Novartis, Teva, Sanofi Aventis, Hoffman La Roche and holds patents.

- **Friedemann Paul** received speaker honoraria, travel grants and research grants from Teva/Sanofi Aventis, Bayer Schering, Merck Serono, Biogen Idec and Novartis. FP received travel reimbursement by the Guthy Jackson Charitable Foundation. FP is supported by the German Research Foundation (DFG Exc 257), the Artur Arnstein Foundation and the Werth Foundation of the City of Cologne.

- **Orhan Aktas** received grants by German Research Foundation (DFG), Eugène Devic European Network (EU-FP7), German Ministry for Education and Research, Schaufler Foundation, honoraria for lectures by Novartis, Bayer Schering, Teva, Biogen Idec, holds patents and received travel/accommodations/meeting expenses by Novartis, Bayer Schering, and Merck Serono.
Reference List

Figure legends

Figure: Pre- and postoperative spinal MRIs of patient #1. (A, B) Shown is a longitudinal and space-consuming transverse myelitis between vertebral segments Th2 and Th7 before diagnostic biopsy. The T2w image shows a particular swelling of the spinal lesion (A, white arrow heads) and the T1w image a low contrast Gadolinium enhancement (B, white arrows). Images (C) and (D) illustrate the postoperative state after spinal biopsy at level Th5. Epidural bleeding occurred at levels Th4-Th7 with ventral dislocation and compression of the myelon (open white arrows in T2w- (C) and STIRw- (D) images).

Supplemental Figure: Histology of spinal NMO lesion of patient #6. Shown here is a destructive inflammatory demyelinating lesion with AQP4 loss. A small specimen is available for analysis from an eloquent lesion location within the spinal cord (A; HE). Higher magnification shows a destructive, loose-textured lesion with numerous macrophages (B; HE) and a T cell infiltrate (C; anti-CD3). Only few axons are preserved, underlining the destructive nature of the lesion (D; anti-NF200). Although the myelin is partially preserved (E; anti-PLP), higher magnification clearly shows myelin degradation products within macrophages, indicating active demyelination (F; anti-MBP; arrows indicate macrophages with myelin debris). Astrocytes appear partially dystrophic and partially depleted (G; anti-GFAP; arrow indicates dystrophic astrocyte), whereas AQP4 staining of astrocytes is completely lost (H; anti-AQP4). Macrophages show AQP4-positive degradation products within their cytoplasm (H; brown-colored macrophages). Scale bars: A: 500 μm; B-D: 100 μm; E: 200 μm; F+G: 50 μm; H: 100 μm.
<table>
<thead>
<tr>
<th>Age at onset, sex, origin</th>
<th>Patient #1</th>
<th>Patient #2</th>
<th>Patient #3</th>
<th>Patient #4</th>
<th>Patient #5</th>
<th>Patient #6</th>
<th>Patient #7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at LESCL/biopsy</td>
<td>52</td>
<td>24</td>
<td>45</td>
<td>44</td>
<td>47</td>
<td>31</td>
<td>36</td>
</tr>
<tr>
<td>Timespan first symptom to biopsy</td>
<td>2 months</td>
<td>64 months</td>
<td>19 months</td>
<td>144 months</td>
<td>33 months</td>
<td>0.25 month (8 days)</td>
<td>4.5 months</td>
</tr>
<tr>
<td>Timespan from LESCL onset to biopsy</td>
<td>2 months</td>
<td>1.5 months</td>
<td>10 months</td>
<td>1 month</td>
<td>0.25 month (8 days)</td>
<td>0.25 month (8 days)</td>
<td>4.5 months</td>
</tr>
<tr>
<td>Optic neuritis</td>
<td>Never</td>
<td>2x left, 2x right before biopsy</td>
<td>2x after biopsy (once bilateral, once left)</td>
<td>Never</td>
<td>2x before biopsy</td>
<td>Never</td>
<td>1x after biopsy (10/2003)</td>
</tr>
<tr>
<td>LESC symptoms</td>
<td>Feet numbness, paraparesis (BMRC: 5-5), spinal ataxia, beltlike thoraco-lumbar dysesthesia, sensory function loss below Th6</td>
<td>Spastic paraparesis (BMRC: 4+/5), tetraataxia, voiding dysfunction, back pain, sensory function loss below Th5</td>
<td>Gait disturbances, slight tetraparesis (BMRC: 4+/5), sensory function loss below C1</td>
<td>Dyesthesias at occiput, right sided sensorimotor deficit</td>
<td>Severe paraparesis, sensory function loss below Th3, voiding dysfunction</td>
<td>No improvement, paraparesis, sensory function loss below Th4, voiding and defecation dysfunction</td>
<td></td>
</tr>
<tr>
<td>Cerebral MRI at LESCL</td>
<td>Multiple WML, Gd-; most likely microangiopathic</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
<td>Unspecific WML</td>
<td>Few unspecific gliotic changes</td>
<td>Normal</td>
</tr>
<tr>
<td>Spinal MRI of LESCL</td>
<td>Th2-7, slight Gd+, longitudinally extensive centrally located lesion with cord swelling</td>
<td>C2-6, focal Gd+, longitudinally extensive dorsally located lesion with cord swelling</td>
<td>C1-7, focal Gd+, longitudinally extensive dorsally located lesion with mild cord swelling</td>
<td>Medulla oblongate-C4/5, Gd-, longitudinally extensive centrally located lesion</td>
<td>Th1-5, focalGd+, longitudinally extensive ventrally located lesion with cord swelling</td>
<td>C7-Th6, focal Gd+, longitudinally extensive centrally located lesion with mild cord swelling</td>
<td>C2-Th9, focal Gd+, longitudinally extensive centrally located lesion with cord swelling</td>
</tr>
<tr>
<td>CSF at LESCL, OCB pattern</td>
<td>4 cells/µl, Type 4</td>
<td>2 cells/µl, Type 1</td>
<td>6 cells/µl, Type 1</td>
<td>Minimal pleocytosis, Type1</td>
<td>25 cells/µl, n.a.</td>
<td>51 cells/µl, Type 3</td>
<td>10 cells/µl, Type 1</td>
</tr>
<tr>
<td>EDSS prior biopsy</td>
<td>2.5</td>
<td>3.5</td>
<td>2.5</td>
<td>4.0</td>
<td>5.5</td>
<td>7.5</td>
<td>8.0</td>
</tr>
<tr>
<td>Suspected diagnosis prior to biopsy</td>
<td>Astrocytoma, Ependymoma</td>
<td>Atypical pen like glioma</td>
<td>Tumor of unknown etiology</td>
<td>Spinal tumor</td>
<td>Spinal glioma (astrocytoma)</td>
<td>Intramedullary tumor</td>
<td>Intramedullary tumor</td>
</tr>
<tr>
<td>Acute treatment of spinal cord lesion</td>
<td>Dexamethasone, oral prednisolone, performed after spinal cord biopsy</td>
<td>IV steroid pulse, transient good improvement</td>
<td>Ceftriaxone, IV steroid pulse, IVIG, transient improvement</td>
<td>IV steroid pulse, no improvement</td>
<td>IV steroid pulse, transient minor improvement</td>
<td>IV steroid pulse, performed after spinal cord biopsy</td>
<td>IV steroid pulse, minor improvement</td>
</tr>
<tr>
<td>Postoperative complications</td>
<td>Epidural hematoma (requiring surgical revision), paraplegia</td>
<td>None</td>
<td>Slight increase of leg weakness and numbness</td>
<td>CSF leakage (3 surgical revisions), tetraparesis</td>
<td>Paraplegia</td>
<td>Paraplegia</td>
<td>None</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>------</td>
<td>---</td>
<td>---</td>
<td>------------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>Initial histopathology</td>
<td>Inflammatory, destructive CNS lesion</td>
<td>Gliogenic tumor with desmoplastic angiogenic compound of low malignancy; DD atypical glioma</td>
<td>Presumed angiodysgenetic necrotizing myelopathy Foix-Alajouanine</td>
<td>Subacute necrosis in clearance, definitively no tumor</td>
<td>Tumor free spinal cord (no clear diagnosis possible)</td>
<td>CNS tissue with severe reactive and resorptive changes. No neoplasia.</td>
<td>Reactive CNS-tissue with inflammatory and resorptive changes</td>
</tr>
<tr>
<td>AQP4-Ab tests (CBA) after biopsy</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
<td>Positive</td>
</tr>
<tr>
<td>Final diagnosis at last follow-up</td>
<td>AQP4-Ab positive LETM</td>
<td>AQP4-Ab positive NMO</td>
<td>AQP4-Ab positive NMO</td>
<td>AQP4-Ab positive LETM</td>
<td>AQP4-Ab positive NMO</td>
<td>AQP4-Ab positive LETM</td>
<td>AQP4-Ab positive NMO</td>
</tr>
<tr>
<td>EDSS at last follow-up/months after biopsy</td>
<td>2.0/25 months</td>
<td>8.0/218 months</td>
<td>8.5/121 months</td>
<td>7.5/69 months</td>
<td>8.0/23 months</td>
<td>4.0/20 months</td>
<td>4.5/130 months</td>
</tr>
<tr>
<td>Time from first symptom to final diagnosis</td>
<td>2.5 months</td>
<td>144 months</td>
<td>30 months</td>
<td>160 months</td>
<td>34 months</td>
<td>0.5 month</td>
<td>108 months</td>
</tr>
<tr>
<td>Time from biopsy to final diagnosis</td>
<td>0.5 month</td>
<td>80 months</td>
<td>11 months</td>
<td>16 months</td>
<td>1 month</td>
<td>0.25 month</td>
<td>103.5 months</td>
</tr>
<tr>
<td>Medication at last follow-up</td>
<td>Rituximab</td>
<td>Rituximab</td>
<td>Rituximab, low dose steroids</td>
<td>IVIG, low dose steroids</td>
<td>Rituximab</td>
<td>Rituximab</td>
<td>Rituximab</td>
</tr>
</tbody>
</table>

Abbreviations: AQP4-Ab: aquaporin4-antibody; BMRC: British Medical Research Council; C: cervical; CBA: cell based assay; CNS: central nervous system; CSF: cerebrospinal fluid; EDSS: Expanded Disability Status Scale; Gd: gadolinium; IV: intravenous; IVIG: intravenous immunoglobulins; LESCL: longitudinally extending spinal cord lesion; LETM: longitudinally extensive transverse myelitis; LFB: Luxol Fast Blue; MRI: magnetic resonance imaging; n.a.: not available; OCB: oligoclonal bands; ON: optic neuritis; Th: thoracic; WML: white matter lesions.

Oligoclonal bands patterns (OCB-P): Pattern 1 = no OCBs in CSF and serum; pattern 2 = OCBs in CSF but not serum (intrathecal IgG synthesis); pattern 3 = OCBs in CSF but not serum (intrathecal IgG synthesis) plus additional identical OCBs in CSF and serum; pattern 4 = identical OCBs in CSF and serum (systemic immune reaction).