Year: 2013

Genome sequences of two Enterobacter pulveris strains 601/05T (= LMG 24057T = DSM 19144T), and 1160/04 (= LMG 24058 = DSM 19146), isolated from fruit powder

Gopinath, G R; Grimm, C J; Tall, B D; Mammel, M K; Sathyamoorthy, V; Trach, L H; Chase, H R; Fanning, S; Stephan, R

DOI: https://doi.org/10.1128/genomeA.00991-13

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-87538
Published Version

Originally published at:
Gopinath, G R; Grimm, C J; Tall, B D; Mammel, M K; Sathyamoorthy, V; Trach, L H; Chase, H R; Fanning, S; Stephan, R (2013). Genome sequences of two Enterobacter pulveris strains 601/05T (= LMG 24057T = DSM 19144T), and 1160/04 (= LMG 24058 = DSM 19146), isolated from fruit powder. Genome Announcements, 1(6):e00991-13.
DOI: https://doi.org/10.1128/genomeA.00991-13
Genome Sequences of Two *Enterobacter pulveris* Strains, 601/05T (=LMG 24057T =DSM 19144T) and 1160/04 (=LMG 24058 =DSM 19146), Isolated from Fruit Powder

Gopal R. Gopinath, Christopher J. Grim, Ben D. Tall, Mark K. Mammel, Venugopal Sathyamoorthy, Larisa H. Trach, Hannah R. Chase, Séamus Fanning, Roger Stephan and Venugopal Sathyamoorthy

We report the draft genome sequences of the *Enterobacter pulveris* strains 601/05T (=LMG24057T =DSM19144T) and 1160/04 (=LMG24058 =DSM19146), isolated from fruit powder. The genome assemblies for the *E. pulveris* type strain, LMG24057, and strain LMG24058 have sizes of 4,708,624 and 4,811,103 bp and G+C contents of 56.6% and 56.5%, respectively.

Received 29 October 2013 Accepted 1 November 2013 Published 5 December 2013

© 2013 Gopinath et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

Address correspondence to Gopal R. Gopinath, gopal.gopinathrao@fda.hhs.gov.

Stefan et al. (1) reported the isolation of six strains from fruit powder and from infant formula and its production environment, which were presumptively identified as *Enterobacter sakazakii*, now in the genus *Cronobacter*, through the use of differential chromogenic media. Additionally, these isolates displayed the yellow pigmentation on tryptone soy agar plates that is typical of *Cronobacter* (2). Using a typical polyphasic taxonomic scheme, Stefan et al. (1) classified these strains as belonging to the novel species *Enterobacter pulveris*.

Recently, Brady et al. (3) proposed that *E. pulveris* be recognized as a new *Cronobacter* species, and subsequently, Masood et al. (4) published a first draft genome sequence for *E. pulveris* strain E441 (=LMG24059). Because the taxonomic position remains unclear, we sequenced two strains of *E. pulveris*, the type strain 601/05 (=LMG24057 =DSM19144) and strain 1160/04 (=LMG24058 =DSM19146), which were originally described by Stefan et al. (1). The libraries were constructed using the Nextera XT DNA sample preparation kit (Illumina, San Diego, CA), and whole-genome sequencing was performed on a MiSeq sequencer (Illumina, San Diego, CA), utilizing 500-cycle paired-end version 2 chemistry. Paired-end FASTQ datasets were trimmed and assembled using the CLC Genomics Workbench, version 6.5 (CLC bio, Aarhus, Denmark). A draft genome of 4,708,624 bp, containing 252 contigs (>500 bp in size), was obtained for strain 601/05T, while that of strain 1160/04 was 4,811,103 bp on 137 contigs (>500 bp in size). The genomic contigs were annotated using the RAST server (5) to identify RNAs and protein-coding genes. The draft genomes of strains 601/05T and 1160/04 are predicted to contain 4,440 and 4,570 coding sequences (CDSs), respectively.

The two *E. pulveris* genomes share an average nucleotide identity of 98.98%. Both genomes possess a number of noteworthy features, namely, operons for the catabolism of protocatechuic, xylose, β-xyloside, sucrose, pentose sugar alcohol, l-rhamnose, D-galactarate, D-galactonate, D-serine, fructoseosylyne, sialic acid, 5-keto-D-glucorinate, and l-idoic acid, as well as the presence of three type 1, one P, and one sigma chaperone-usher fimbria clusters, curli fimbriae, a pga biofilm operon, a CRISPR element, and the *lor* autoinducer-2 operon. Additionally, each genome contains the uptake of hexose phosphates (*uph*) system and a number of PTS- and ABC-type transporters of unidentified substrates.

There are also a number of genes and features that are unique to each genome, such as prophages and prophage-like elements and type VI secretion system cluster genes. Additionally, the genome of the type strain 601/05 harbors an *α*-xyloside and a *β*-linked disaccharide utilization operon, as well as two additional type 1 fimbria clusters. Conversely, the genome of strain 1160/04 contains a melibiose catabolism operon, a Tn7-like transposon harboring cobalt, cadmium, zinc, and mercury resistance, and an IncF class conjugative (*tra*) plasmid.

Nucleotide sequence accession numbers. The whole-genome shotgun projects for *E. pulveris* strains 601/05T and 1160/04 are available in GenBank under accession no. AXSY00000000 and AXSZ0000000. The corresponding NCBI Biosample records, SAMN02369274 (tax ID, 1406823) and SAMN02369275 (tax ID, 1406822), are subject to taxonomic revision.

ACKNOWLEDGMENT

We acknowledge the financial support provided through the Irish government’s Food Institutional Research Measure (FIRM) grant no. 05/R&D/D/363.

REFERENCES

2. Lehner A, Grimm M, Rattel T, Ruepp A, Frishman D, Manzardo GG,

