Design and Applications of Protein Epitope Mimetics

Robinson, John A

Abstract: Macromolecular structures represent an interesting starting point for the design and synthesis of small-molecule mimetics of surface epitopes that mediate protein–protein and protein–nucleic acid interactions. The resulting protein epitope mimetics (PEMs) provide a source of new biologically active molecules that are useful as biomolecular probes in chemical biology, as well as novel drug or vaccine candidates. This is illustrated here through studies on PEMs as synthetic vaccine candidates targeting the malaria parasite and the human immunodeficiency virus type-1 (HIV-1). In addition, various folded PEMs with -hairpin structures have been designed that target protein–protein and protein–nucleic acid interactions, as well as others that interact with cellular receptors such as CXCR4 and the bacterial outer membrane protein LptD. In this last example, the PEMs possess a novel antibiotic activity that has so far not been observed with traditional small synthetic molecules or natural products.

DOI: https://doi.org/10.2533/chimia.2013.885

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-87742
Submitted Version

Originally published at:
DOI: https://doi.org/10.2533/chimia.2013.885
Design and Applications of Protein Epitope Mimetics

John A. Robinson

Chemistry Department, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

E-mail: robinson@oci.uzh.ch
Tel: ++ (0)44 635 4242
Abstract

Macromolecular structures provide an ideal starting point for the design and synthesis of small-molecule mimetics of surface epitopes that mediate protein-protein and protein-nucleic acid interactions. The resulting protein epitope mimetics (PEMs) provide a source of new biologically active molecules that are useful as biomolecular probes in chemical biology, as well as novel drug or vaccine candidates. This is illustrated here through studies on PEMs as synthetic vaccine candidates targeting the malaria parasite and the human immunodeficiency virus type-1 (HIV-1). In addition, various folded PEMs with β-hairpin structures have been designed that target protein-protein and protein-nucleic acid interactions, as well as others that interact with cellular receptors such as CXCR4 and the bacterial outer membrane protein LptD. In this last example, the PEMs possess a novel antibiotic activity that has so far not been observed with traditional small synthetic molecules or natural products.
1. Introduction

Mimicry of the three-dimensional (3D) surface features of proteins important for function in smaller synthetic molecules - called Protein Epitope Mimetics (PEMs) - has grown in importance in recent years. This area of chemical biology is being driven forward rapidly by progress in genomics and proteomics, as well as by the massive growth in the 3D structural protein database (PDB). Efforts to design and synthesize PEMs frequently lead to novel organic molecules, peptidomimetics and foldamers, not found in natural products or traditional small drug-like molecules. This opens the prospect of uncovering new biologically active molecules that might be useful tools in efforts to understand biological molecular recognition, in the development of novel biomolecular probes, as well as novel drug or vaccine candidates.

Knowing at a structural level how proteins interact with other macromolecules provides an ideal starting point for PEM design. For example, protein-protein interactions (PPIs) and protein-nucleic acid interactions (PNIs) are often mediated by elements of secondary structure on the protein surface. Synthetic molecules that mimic these folded structures may then be useful inhibitors of protein-protein and protein-nucleic acid interactions. In addition, knowing at a structural level how antibodies recognize epitopes on pathogen-derived protective antigens opens new possibilities for applying PEMs in synthetic vaccine design, in the emerging field of structural vaccinology.\[1\]

Considerable scientific challenges remain, however, in transforming 3D structural information from the PDB into rationally designed PEMs with appropriate chemical and biological properties. Mutagenesis experiments can reveal energetically
important hot spots at protein-protein interfaces.[2] However, the internal dynamics of proteins, which can lead to structural changes over diverse time-scales, are more difficult to access experimentally, and yet exert a powerful influence upon binding affinity, and in ways that are difficult to predict from a single ground state crystal structure.[3] Notwithstanding these mechanistic problems, important progress in PEM design has been made by focusing on protein hot-spots and in optimizing surface complementarity upon binding to a macromolecular target.

2. Design of β-hairpin mimetics

β-Hairpin surface loops are found in many proteins, where they frequently mediate protein-protein and protein-nucleic acid interactions. A β-hairpin loop is composed of two consecutive hydrogen-bonded antiparallel β-strands connected by a turn segment (Figure 1). Many subtle variations can occur in backbone conformation within β-hairpin loops in folded proteins, depending upon the loop length and hydrogen-bonding pattern between the two antiparallel β-strands.[4] This structural diversity can be captured in β-hairpin mimetics designed by transplanting the hairpin loop from a folded protein of known structure onto a semi-rigid hairpin-stabilizing template.[5] This affords a macrocyclic, conformationally constrained, template-bound β-hairpin mimetic. One very convenient template is the dipeptide D-Pro-L-Pro, which (importantly) adopts a very stable type-II$'$ β-turn,[6] ideal for nucleating the preferred right-handed twist typically observed between adjacent antiparallel β-strands in proteins. This approach was demonstrated through the design of mimetics of a hairpin loop in the receptor for IFNγ and CDR loops from IgG antibodies, as illustrated in Figure-1.[7] When transplanting a β-hairpin loop from a known protein structure onto
this template, the N- and C-terminal loop residues adjacent to the template will be forced into a cross-strand hydrogen bonding geometry (Figure-1). The template then functions both to stabilize hairpin conformations and to fix the cross-strand hydrogen-bonding register in the loop.

An efficient method of synthesizing such β-hairpin mimetics has been established. Typically, a linear precursor is assembled by solid phase peptide chemistry, and then cyclized in solution and deprotected. This process is robust and amenable to parallel synthesis, allowing the production of small libraries of structurally related hairpin mimetics. Proteinogenic and non-proteinogenic amino acids, as well as an array of related building blocks can be used for synthesis, as a means to tailor and optimize structure and biological properties. This process forms the basis of the PEM-technology, which has been commercialized by Polyphor AG and applied to challenging pharmaceutical targets such as protein-protein interaction inhibitors that have proven difficult to address using traditional small drug-like molecules.

Over recent years, β-hairpin mimetics have been investigated that bind with high affinity and specificity to many interesting biological targets. This includes molecules that bind to the Fc fragment of IgGs, mimetics that bind to and inhibit serine proteases such as trypsin, and mimetics that bind to RNA targets such as the TAR and RRE RNA from HIV-1. Folded RNA segments represent particularly interesting targets for β-hairpin mimetics. Recently, β-hairpin mimics of the Tat protein were discovered that are pM inhibitors of the Tat-TAR interaction and discriminate between even closely related RNAs. Interestingly, the structure of TAR RNA bound to one mimetic has a quite different conformation to that seen in the
RNA with no bound ligand, or bound to argininamide.[12e, 14] The complex internal dynamics of the TAR RNA seems to be particularly important in adapting and binding to the β-hairpin shaped peptidomimetics. One mimetic has been shown to inhibit HIV-1 infection in whole cells. The mimetic is a nanomolar inhibitor of cellular HIV-1 replication, inhibiting replication in primary lymphocytes of a wide range of viral strains representing all the major HIV clades.[12f]

A less obvious application of β-hairpins is in mimicry of α-helical epitopes. In several cases, however, it was shown how the well-defined geometry of a hairpin scaffold can be exploited to display amino acid side chains so that they mimic the positions they adopt when attached at i and $i+3/4$ positions along a helical scaffold (Figure 2).[12h, 15] For example, a family of β-hairpin mimetics was developed that mimic an α-helical epitope in the p53 protein and bind with nanomolar affinity to its interaction partner, the HDM2 protein.[15a, 15b, 16]

Other applications include hairpin mimetics that target cell surface receptors, such as the chemokine receptor CXCR4 on lymphocytes,[17] and the outer membrane translocon LptD in Gram-negative bacteria (see below).[18] PEMs targeting CXCR4 are very potent and selective inhibitors of this G-protein coupled receptor (GPCR), which in humans promotes chemotaxis in leukocytes, progenitor cell migration, and embryonic development of the cardiovascular, hematopoietic and central nervous systems. CXCR4 has also been associated with multiple types of cancers, where its overexpression/activation promotes metastasis, angiogenesis and tumor growth/survival. CXCR4 is also one of the co-receptors used by HIV-1 to gain entry to lymphocytes.[19] Molecules that antagonize CXCR4 are therefore potentially useful to induce mobilization of hematopoietic stem cells from the bone marrow to the
periphery, for example, for stem cell transplantation, as well as for anti-cancer and anti-HIV activity. A recent crystal structure illustrates in atomic detail how one β-hairpin peptide interacts with CXCR4.[20]

3. Synthetic vaccine design

Conformationally constrained PEMs are also likely to find important applications in synthetic vaccine design.[21] Of special interest are epitopes on the surface of invading microorganisms that are recognized by antibodies that protect against infection - so-called protective or neutralizing antibodies. There is a rapidly growing number of crystal structures in the PDB of neutralizing antibody Fab fragments bound to their cognate pathogen-derived antigens.[22] Such crystal structures reveal the folded epitope against which a protective humoral immune response was elicited. One challenge is to design synthetic molecules that mimic these folded structures and that can be used to elicit a protective immune response against the pathogen.[23] A further challenge is to find a suitable method to deliver the epitope mimetics to the immune system, so that a strong specific (and protective) immune response is elicited in a diverse human population. Here the engineering of nanoparticles holds great promise for the development of new immunomodulatory agents.[24] Two examples from recent work illustrate how these challenges might be addressed.

Our efforts to design a synthetic malaria vaccine focused initially upon the so-called circumsporozoite (CS) protein, an immunodominant protective antigen on the surface of the sporozoite stage of \textit{Plasmodium falciparum}, carried by live mosquitoes.[25] The central region of this membrane-anchored CS protein contains a
(NPNA)$_{37}$ repeat region, which is highly immunogenic. Early attempts to exploit this repeat region in a clinical trial using a linear (NANP)$_3$ peptide conjugated to tetanus toxin in alum,[26] gave disappointing results. In our approach, sequential rounds of epitope design, synthesis and testing were followed, to identify vaccine candidates that elicit primarily or exclusively antibodies that contribute to protection against sporozoite invasion of liver cells.

The NPNA repeat has long been known to favor β-turn conformations in solution[27] Indeed, a crystal structure of the peptide Ac-ANPNA-NH$_2$ revealed the NPNA motif in a type-I β-turn conformation (Figure 3).[28] However, it is still unclear how such β-turns might propagate in the CS protein, containing multiple tandemly linked copies of the NPNA motif. It proved possible to stabilize β-turn conformations in linear NPNA-repeats by substituting Pro for α-methyl-proline.[29] Further rounds of optimization, however, including studies of template-linked macrocyclic peptides,[30] led to a constrained derivative called UK40 (Figure 3), which proved to have structural and antigenic similarity to the repeat region of the native CS protein.[31] For delivery, this mimetic was coupled to a phospholipid (to give UK39) and incorporated into reconstituted influenza virus-like particles (also called virosomes, or immunopotentiating reconstituted influenza virosomes (IRIVs)).[30i, 31] IRIVs are spherical, unilamellar enveloped virus-like particles, prepared by detergent removal from a mixture of natural and synthetic phospholipid and influenza surface glycoproteins. Upon reconstitution from lipids, influenza proteins, and the lipo-peptide antigen, the CS epitope mimetic should be displayed on the surface of the IRIV nanoparticles where it can be recognized by B cells. In this way, delivery of UK39 to mice and rabbits elicited high titres of sporozoite cross-reactive antibodies that inhibit invasion of hepatocytes by \textit{P. falciparum} sporozoites.[31]
This approach was predicated upon the idea that several synthetic antigens, mimicking epitopes on different stages of the *P. falciparum* life cycle, might be combined to form a multicomponent, multi-stage vaccine. As a next step, a second lipopeptide was developed to elicit antibodies against the apical membrane antigen 1 (AMA-1), a membrane protein that is located within the apical complex of the merozoite surface of the liver-stage parasite, and which is essential for invasion of erythrocytes.\[32\] A cyclized synthetic peptide (called AMA49-C1 as a phospholipid conjugate), based upon the semi-conserved loop I of domain III, was identified and shown to induce asexual blood-stage parasite growth inhibitory antibodies using the IRIV delivery system.\[32a\] Additional mimetics were also prepared and tested based on epitopes in the merozoite proteins MSP-1, MSP-3 and serine-repeat antigen 5.\[33\]

In several phase I/II clinical studies conducted by Pevion AG in collaboration with the Swiss Tropical and Public Health Institute, the virosomally formulated UK-39 and AMA49-C1 vaccine, was found to be well tolerated, and both components elicited strong specific antibody responses in all immunized volunteers.\[34\] A promising observation made during clinical trials in Africa was that the incidence of clinical malaria episodes in children receiving the vaccine was half the rate of the control children.\[34d\] These encouraging results suggest that further development of this approach to a multivalent malaria peptide vaccine may be worthwhile.

In a second example, a different nanoparticle delivery vehicle is exemplified, made from components totally of synthetic origin. The Synthetic Virus-Like Particle (SVLP) delivery system exploits the unique chemical and physical properties of designed synthetic lipopeptide building blocks, which in aqueous buffers spontaneously self-assemble into homogeneous nanoparticles in the 20-30 nm size range.\[35\] The lipopeptide building blocks contain a parallel trimeric coiled-coil motif,
fused to a CD4+ T-helper epitope (Figure-4). The lipid portion can be a bacterial TLR ligand such as Pam$_2$Cys or Pam$_3$Cys, which is coupled to one terminus of the peptide chain. A synthetic PEM can be coupled to the other end of the peptide chain. Self-assembly into SVLPs occurs spontaneously upon dissolving in aqueous buffer, driven by formation of trimeric coiled-coil helical bundles and then by association of multiple bundles into a micelle like particle with the lipid chains buried in the core of the nanoparticle. SVLPs present an array of about 70-80 copies of the epitope mimic over the surface of the nanoparticle.$^{[35a-c]}$ Dendritic cells bind rapidly to SVLPs, which are internalized using multiple endocytic routes, dominated by caveolin-independent lipid raft-mediated macropinocytosis.$^{[35c]}$ Processing then occurs more slowly by proteolytic cleavage of the lipopeptides. The processing is highly effective, however, as evidenced by strong epitope-specific immune responses induced in animals, without need for external adjuvants. One application of the SVLP technology is described below, focusing on the V3 loop in the HIV-1 envelope glycoprotein gp120.

The β-hairpin V3 loop is a highly immunogenic region of the HIV-1 envelope glycoprotein gp120 that becomes exposed on the viral surface after binding to the primary receptor CD4 on target cells binds.$^{[36]}$ Several crystal structures are now available of Fab fragments from neutralizing antibodies bound to peptides derived from the V3 loop, including one of the mAb F425-B4e8.$^{[37]}$ The linear V3 peptide is flexible in free solution, but a constrained V3 loop mimic was prepared$^{[37]}$ by transplanting the loop sequence onto the D-Pro-L-Pro template.$^{[35d,38]}$ 1H-NMR studies revealed a very close structural similarity between this mimic and the V3 peptide bound to the F425-B4e8 antibody.$^{[35d]}$
To study immune responses, the V3 loop mimetic was linked to SVLPs through a unique Cys residue near the C-terminus of the SVLP lipopeptide building blocks. A computer model of the resulting SVLPs (Figure 4), based on extensive biophysical data, illustrates the dense array of epitope mimetics displayed on the surface of the nanoparticle. These V3-SVLPs proved to be highly immunogenic in rabbits, eliciting high titers of V3-mimetic specific IgG antibodies, including antibodies that bind specifically to recombinant gp120 by ELISA. Moreover, some of the antibodies generated showed HIV-1 neutralizing activity in whole cell infection assays.[35d]

These results illustrate a chemistry-based and structure-driven approach to vaccine discovery, which may allow the design of many new vaccine candidates targeting both infectious and chronic human diseases. The SVLP technology and its use in synthetic vaccine design is now being pursued by the company Virometix AG.

4. Discovery of the β-hairpin antibiotics

β-Hairpin-shaped peptides are found within the large family of naturally occurring cationic antimicrobial peptides (CAPs), which play important roles in innate immunity in many different organisms, by providing a first line of defense in the host against viral and bacterial infection.[39] Many CAPs show broad-spectrum antimicrobial activity in the micromolar range, typically by causing lysis of microbial cell membranes.[39b] This lytic action, however, can also occur with human cells (e.g. red blood cells), albeit at higher concentrations. We set out to investigate whether structurally related β-hairpin PEMs could be developed that retain good antimicrobial activity, but with a reduced lytic (toxic) effects on human red blood cells.
One group of CAPs, including the protegrins, polyphemusins, tachyplesin, arenicin and Θ-defensin, possess β-hairpin structures stabilized by disulfide bridges.\[^{39}\] Macrocyclic peptidomimetics of these CAPs could be designed using a D-Pro-L-Pro template to stabilize folded β-hairpin structures. In this way, peptides were discovered that indeed possess broad-spectrum antimicrobial activity in the low micromolar range, comparable to that seen with protegrin I, but with much reduced lytic activity against human red blood cells.\[^{40}\] Attempts to improve further the antimicrobial activity, by an iterative process of library synthesis and screening, led to the discovery of cyclic peptidomimetics with a novel type of antimicrobial activity.\[^{18a}\]

This is illustrated by the cyclic peptide L27-11 (Figure 5), which shows antimicrobial activity in the nanomolar range specifically against Gram-negative *Pseudomonas* sp. Moreover, the enantiomeric form is essentially inactive (MIC ≥ 32 µg/ml), suggesting a highly enantioselective interaction with a chiral target, rather than a non-stereoselective interaction with lipid chains of the cell membrane, which is typical of many CAPs. NMR studies showed that L27-11 indeed adopts β-hairpin conformations in solution, and that the β-hairpin structure is important for antimicrobial activity.\[^{41}\]

The mechanism of action of these novel antibiotics is of great interest. L27-11 does not cause lysis of cell membranes. The target of the antibiotic was revealed by two complementary approaches, namely, photoaffinity labeling experiments and a forward genetic screen for resistance determinants in *P. aeruginosa*. Both approaches identified the same β-barrel outer membrane (OM) protein, LptD, as the likely target. Over the past 10 years much has been learnt about the function of LptD in *E. coli* and related Gram-negative bacteria.\[^{42}\] LptD is present in the OM of most Gram-negative bacteria in a complex with the lipoprotein LptE.\[^{43}\] The LptD/E complex has an essential function in the biogenesis of the outer cell membrane.
The inner membrane (IM) of Gram-negative bacteria is a lipid bilayer composed of phospholipids, whereas the OM is an asymmetric bilayer composed of phospholipids in the inner and lipopolysaccharide (LPS) in the outer leaflet (Figure 5). This asymmetric OM does not form spontaneously, but rather requires dedicated machinery for assembly during cell growth. New LPS molecules are assembled in the cytoplasm and at the IM, are then extracted from the IM, transported across the periplasm, and then translocated from the periplasmic side to the outer surface of the OM. Seven essential Lpt (lipopolysaccharide transport) proteins (LptA-G) are known to mediate this transport process.[42b, 44] The LptD/E complex has the important function of translocating LPS from the periplasm into the outer leaflet of the OM. Upon exposure to L27-11, defects in OM structure can be seen by transmission electron microscopy within P. aeruginosa cells.[18a] This and other experimental evidence support the hypothesis that the antibiotic, by interaction with LptD, inhibits LPS transport to the cell surface, leading to disruption of OM biogenesis.[18b] So far no other small molecules or natural products are known that target the essential LptD/E translocon in the OM of Gram-negative bacteria.

Given the potency of the antibiotic against P. aeruginosa, and its novel mechanism of action, efforts have been made to develop a lead for clinical development. P. aeruginosa is one of the seven so-called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa and Enterobacter spp.), a selection of antibiotic-resistant bacteria highlighted by the Infectious Diseases Society of America (IDSA) that increasingly cause difficult-to-treat infections in hospitals and the wider community.[45] The company Polyphor AG has now developed related PEMs such as POL7001, which has the same potent antimicrobial activity, but much-
improved stability in human plasma.[18a] In addition, a clinical candidate called POL7080 with optimized ADMET properties has been identified, which has recently completed successfully a human phase I clinical study.[46] In future work, it will be fascinating to see whether related β-hairpin antibiotics can be found that target other essential β-barrel OM proteins, such as LptD in the other Gram-negative bacteria highlighted by the ISDA.

\section*{Acknowledgements}

Special thanks go to all the talented students who carried out the research at UZH described above, as well as Annelies Meier for outstanding technical support. Special thanks also go to Dr. Daniel Obrecht and the rest of the PEM team at Polyphor AG; to Dr. Arin Ghasparian at Virometix AG; to Prof. Gerd Pluschke at the Swiss Tropical Institute; to Prof. Gabriele Varani, University of Washington, USA; and to Profs. Alexandra Trkola and Prof. Leo Eberl at UZH for collaborations.

\section*{References}

\begin{enumerate}

Figure legends

Figure 1. Conformationally constrained β-hairpin mimetics can be designed by transplanting the hairpin sequence from the protein of interest onto a suitable hairpin-stabilizing template (e.g. D-Pro-L-Pro, see text).
Figure 2. Using a β-hairpin to mimic an α-helix. In this case, the helical epitope seen (right) in the crystal structure of a p53-derived peptide bound to a domain of HDM2 (PDB 1YCR),[^47] is converted into a β-hairpin PEM that binds to HDM2 (left) with nanomolar affinity (PDB 2AXI).[15a,15b,16]
Figure 3. A malaria vaccine based upon a constrained peptide from the NPNA repeats in the CS protein. A, Crystal structure of Ac-ANPNA-NH$_2$.$^{[28]}$ B, The mimetics UK39 and UK40. C, Average NMR solution structure of the mimetic UK40.$^{[31]}$ D, Cartoon representing the display of an epitope mimetic on the surface of IIRIVs. Influenza glycoproteins are represented in blue, the membrane in green.
Figure 4. Design of an HIV-1 V3 loop mimetic. **A,** Crystal structure of a V3-derived linear peptide (cyan) bound to the Fab fragment of mAb F425-B4e8 (gray/yellow surface) (PDB 2QSC). The solution structure of a V3 loop mimetic (purple, with D-Pro-L-Pro template (orange) at the top) is shown superimposed on the bound linear peptide. **B,** Conjugation of the V3 loop mimetic (boxed) with a lipopeptide building block. This lipopeptide assembles spontaneously into SVLPs in aqueous buffer. **C,** A computer model is shown of an SVLP particle with multiple V3 epitope mimetics (red) displayed on the surface of the nanoparticle.
Figure 5. A, The β-hairpin antibiotic L27-11 that interacts with LptD. B, NMR solution structure of L27-11. C, The double membrane of Gram-negative bacteria. LptD is an OM protein that is required for translocation of LPS molecules from the periplasm to the cell surface during cell wall biogenesis (see text).