Header

UZH-Logo

Maintenance Infos

Nephrocalcinosis (enamel renal syndrome) caused by autosomal recessive FAM20A mutations


Jaureguiberry, Graciana; et al (2012). Nephrocalcinosis (enamel renal syndrome) caused by autosomal recessive FAM20A mutations. Nephron Physiology, 122(1-2):1-6.

Abstract

BACKGROUND/AIMS: Calcium homeostasis requires regulated cellular and interstitial systems interacting to modulate the activity and movement of this ion. Disruption of these systems in the kidney results in nephrocalcinosis and nephrolithiasis, important medical problems whose pathogenesis is incompletely understood. METHODS: We investigated 25 patients from 16 families with unexplained nephrocalcinosis and characteristic dental defects (amelogenesis imperfecta, gingival hyperplasia, impaired tooth eruption). To identify the causative gene, we performed genome-wide linkage analysis, exome capture, next-generation sequencing, and Sanger sequencing. RESULTS: All patients had bi-allelic FAM20A mutations segregating with the disease; 20 different mutations were identified. CONCLUSIONS: This autosomal recessive disorder, also known as enamel renal syndrome, of FAM20A causes nephrocalcinosis and amelogenesis imperfecta. We speculate that all individuals with biallelic FAM20A mutations will eventually show nephrocalcinosis.

Abstract

BACKGROUND/AIMS: Calcium homeostasis requires regulated cellular and interstitial systems interacting to modulate the activity and movement of this ion. Disruption of these systems in the kidney results in nephrocalcinosis and nephrolithiasis, important medical problems whose pathogenesis is incompletely understood. METHODS: We investigated 25 patients from 16 families with unexplained nephrocalcinosis and characteristic dental defects (amelogenesis imperfecta, gingival hyperplasia, impaired tooth eruption). To identify the causative gene, we performed genome-wide linkage analysis, exome capture, next-generation sequencing, and Sanger sequencing. RESULTS: All patients had bi-allelic FAM20A mutations segregating with the disease; 20 different mutations were identified. CONCLUSIONS: This autosomal recessive disorder, also known as enamel renal syndrome, of FAM20A causes nephrocalcinosis and amelogenesis imperfecta. We speculate that all individuals with biallelic FAM20A mutations will eventually show nephrocalcinosis.

Statistics

Citations

26 citations in Web of Science®
33 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

225 downloads since deposited on 16 Jan 2014
59 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Medical Genetics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2012
Deposited On:16 Jan 2014 14:18
Last Modified:07 Aug 2017 03:33
Publisher:Karger
ISSN:1660-2137
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1159/000349989
PubMed ID:23434854

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 193kB
View at publisher
Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations