Header

UZH-Logo

Maintenance Infos

Impacts of warming on the structure and functioning of aquatic communities: Indivudual- to ecosystem-level responses


O'Gorman, Eoin J; Pichler, Doris E; et al (2012). Impacts of warming on the structure and functioning of aquatic communities: Indivudual- to ecosystem-level responses. In: Woodward, Guy; Jacob, Ute; O'Gorman, Eoin J. Advances in Ecological Research, Vol 47: Global Change in Multispecies Systems Part 2. Elsevier: Academic Press, 81-176.

Abstract

Environmental warming is predicted to rise dramatically over the next century, yet few studies have investigated its effects in natural, multi-species systems. We present data collated over an 8-year period from a catchment of geothermally heated streams in Iceland, which acts as a natural experiment on the effects of warming across different organisational levels and spatiotemporal scales. Body sizes and population biomasses of individual species responded strongly to temperature, with some providing evidence to support temperature size rules. Macroinvertebrate and meiofaunal community composition also changed dramatically across the thermal gradient. Interactions within the warm streams in particular were characterised by food chains linking algae to snails to the apex predator, brown trout These chains were missing from the colder systems, where snails were replaced by much smaller herbivores and invertebrate omnivores were the top predators. Trout were also subsidised by terrestrial invertebrate prey, which could have an effect analogous to apparent competition within the aquatic prey assemblage. Top-down effects by snails on diatoms were stronger in the warmer streams, which could account for a shallowing of mass-abundance slopes across the community. This may indicate reduced energy transfer efficiency from resources to consumers in the warmer systems and/or a change in predator-prey mass ratios. All the ecosystem process rates investigated increased with temperature, but with differing thermal sensitivities, with important implications for overall ecosystem functioning (e.g. creating potential imbalances in elemental fluxes). Ecosystem respiration rose rapidly with temperature, leading to increased heterotrophy. There were also indications that food web stability may be lower in the warmer streams.

Abstract

Environmental warming is predicted to rise dramatically over the next century, yet few studies have investigated its effects in natural, multi-species systems. We present data collated over an 8-year period from a catchment of geothermally heated streams in Iceland, which acts as a natural experiment on the effects of warming across different organisational levels and spatiotemporal scales. Body sizes and population biomasses of individual species responded strongly to temperature, with some providing evidence to support temperature size rules. Macroinvertebrate and meiofaunal community composition also changed dramatically across the thermal gradient. Interactions within the warm streams in particular were characterised by food chains linking algae to snails to the apex predator, brown trout These chains were missing from the colder systems, where snails were replaced by much smaller herbivores and invertebrate omnivores were the top predators. Trout were also subsidised by terrestrial invertebrate prey, which could have an effect analogous to apparent competition within the aquatic prey assemblage. Top-down effects by snails on diatoms were stronger in the warmer streams, which could account for a shallowing of mass-abundance slopes across the community. This may indicate reduced energy transfer efficiency from resources to consumers in the warmer systems and/or a change in predator-prey mass ratios. All the ecosystem process rates investigated increased with temperature, but with differing thermal sensitivities, with important implications for overall ecosystem functioning (e.g. creating potential imbalances in elemental fluxes). Ecosystem respiration rose rapidly with temperature, leading to increased heterotrophy. There were also indications that food web stability may be lower in the warmer streams.

Statistics

Citations

51 citations in Web of Science®
56 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

147 downloads since deposited on 17 Jan 2014
31 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Book Section, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2012
Deposited On:17 Jan 2014 11:50
Last Modified:07 Dec 2017 08:03
Publisher:Academic Press
Series Name:Advances in Ecological Research
ISSN:0065-2504
Publisher DOI:https://doi.org/10.1016/B978-0-12-398315-2.00002-8

Download

Download PDF  'Impacts of warming on the structure and functioning of aquatic communities: Indivudual- to ecosystem-level responses'.
Preview
Filetype: PDF
Size: 5MB
View at publisher