Header

UZH-Logo

Maintenance Infos

Reduced vancomycin susceptibility in an in vitro catheter-related biofilm model correlates with poor therapeutic outcomes in experimental endocarditis due to methicillin-resistant Staphylococcus aureus


Abdelhady, Wessam; Bayer, Arnold S; Seidl, Kati; Nast, Cynthia C; Kiedrowski, Megan R; Horswill, Alexander R; Yeaman, Michael R; Xiong, Yan Q (2013). Reduced vancomycin susceptibility in an in vitro catheter-related biofilm model correlates with poor therapeutic outcomes in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 57(3):1447-1454.

Abstract

Staphylococcus aureus is the most common cause of endovascular infections, including catheter sepsis and infective endocarditis (IE). Vancomycin (VAN) is the primary choice for treatment of methicillin-resistant S. aureus (MRSA) infections. However, high rates of VAN treatment failure in MRSA infections caused by VAN-susceptible strains have been increasingly reported. Biofilm-associated MRSA infections are especially prone to clinical antibiotic failure. The present studies examined potential relationships between MRSA susceptibility to VAN in biofilms in vitro and nonsusceptibility to VAN in endovascular infection in vivo. Using 10 "VAN-susceptible" MRSA bloodstream isolates previously investigated for VAN responsiveness in experimental IE, we studied the mechanism(s) of such in vivo VAN resistance, including: (i) VAN binding to MRSA organisms; (ii) the impact of VAN on biofilm formation and biofilm composition; (iii) VAN efficacy in an in vitro catheter-related biofilm model; (iv) effects on cell wall thickness. As a group, the five strains previously categorized as VAN nonresponders (non-Rsp) in the experimental IE model differed from the five responders (Rsp) in terms of lower VAN binding, increased biofilm formation, higher survival in the presence of VAN within biofilms in the presence or absence of catheters, and greater biofilm reduction upon proteinase K treatment. Interestingly, sub-MICs of VAN significantly promoted biofilm formation only in the non-Rsp isolates. Cell wall thickness was similar among all MRSA strains. These results suggest that sublethal VAN levels that induce biofilm formation and reduce efficacy of VAN in the in vitro catheter-associated biofilms may contribute to suboptimal treatment outcomes for endovascular infections caused by "VAN-susceptible" MRSA strains.

Abstract

Staphylococcus aureus is the most common cause of endovascular infections, including catheter sepsis and infective endocarditis (IE). Vancomycin (VAN) is the primary choice for treatment of methicillin-resistant S. aureus (MRSA) infections. However, high rates of VAN treatment failure in MRSA infections caused by VAN-susceptible strains have been increasingly reported. Biofilm-associated MRSA infections are especially prone to clinical antibiotic failure. The present studies examined potential relationships between MRSA susceptibility to VAN in biofilms in vitro and nonsusceptibility to VAN in endovascular infection in vivo. Using 10 "VAN-susceptible" MRSA bloodstream isolates previously investigated for VAN responsiveness in experimental IE, we studied the mechanism(s) of such in vivo VAN resistance, including: (i) VAN binding to MRSA organisms; (ii) the impact of VAN on biofilm formation and biofilm composition; (iii) VAN efficacy in an in vitro catheter-related biofilm model; (iv) effects on cell wall thickness. As a group, the five strains previously categorized as VAN nonresponders (non-Rsp) in the experimental IE model differed from the five responders (Rsp) in terms of lower VAN binding, increased biofilm formation, higher survival in the presence of VAN within biofilms in the presence or absence of catheters, and greater biofilm reduction upon proteinase K treatment. Interestingly, sub-MICs of VAN significantly promoted biofilm formation only in the non-Rsp isolates. Cell wall thickness was similar among all MRSA strains. These results suggest that sublethal VAN levels that induce biofilm formation and reduce efficacy of VAN in the in vitro catheter-associated biofilms may contribute to suboptimal treatment outcomes for endovascular infections caused by "VAN-susceptible" MRSA strains.

Statistics

Citations

19 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Infectious Diseases
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2013
Deposited On:14 Jan 2014 09:33
Last Modified:05 Apr 2016 17:22
Publisher:American Society for Microbiology
ISSN:0066-4804
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1128/AAC.02073-12
PubMed ID:23295925

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations