Header

UZH-Logo

Maintenance Infos

Constraint and contingency in multifunctional gene regulatory circuits


Payne, Joshua L; Wagner, Andreas (2013). Constraint and contingency in multifunctional gene regulatory circuits. PLoS Computational Biology, 9(6):e1003071.

Abstract

Gene regulatory circuits drive the development, physiology, and behavior of organisms from bacteria to humans. The phenotypes or functions of such circuits are embodied in the gene expression patterns they form. Regulatory circuits are typically multifunctional, forming distinct gene expression patterns in different embryonic stages, tissues, or physiological states. Any one circuit with a single function can be realized by many different regulatory genotypes. Multifunctionality presumably constrains this number, but we do not know to what extent. We here exhaustively characterize a genotype space harboring millions of model regulatory circuits and all their possible functions. As a circuit's number of functions increases, the number of genotypes with a given number of functions decreases exponentially but can remain very large for a modest number of functions. However, the sets of circuits that can form any one set of functions becomes increasingly fragmented. As a result, historical contingency becomes widespread in circuits with many functions. Whether a circuit can acquire an additional function in the course of its evolution becomes increasingly dependent on the function it already has. Circuits with many functions also become increasingly brittle and sensitive to mutation. These observations are generic properties of a broad class of circuits and independent of any one circuit genotype or phenotype.

Abstract

Gene regulatory circuits drive the development, physiology, and behavior of organisms from bacteria to humans. The phenotypes or functions of such circuits are embodied in the gene expression patterns they form. Regulatory circuits are typically multifunctional, forming distinct gene expression patterns in different embryonic stages, tissues, or physiological states. Any one circuit with a single function can be realized by many different regulatory genotypes. Multifunctionality presumably constrains this number, but we do not know to what extent. We here exhaustively characterize a genotype space harboring millions of model regulatory circuits and all their possible functions. As a circuit's number of functions increases, the number of genotypes with a given number of functions decreases exponentially but can remain very large for a modest number of functions. However, the sets of circuits that can form any one set of functions becomes increasingly fragmented. As a result, historical contingency becomes widespread in circuits with many functions. Whether a circuit can acquire an additional function in the course of its evolution becomes increasingly dependent on the function it already has. Circuits with many functions also become increasingly brittle and sensitive to mutation. These observations are generic properties of a broad class of circuits and independent of any one circuit genotype or phenotype.

Statistics

Citations

16 citations in Web of Science®
14 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

21 downloads since deposited on 20 Jan 2014
8 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:13 June 2013
Deposited On:20 Jan 2014 09:04
Last Modified:11 Aug 2017 17:11
Publisher:Public Library of Science (PLoS)
ISSN:1553-734X
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pcbi.1003071
PubMed ID:23762020

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 504kB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations