Header

UZH-Logo

Maintenance Infos

Growth temperature and genome size in bacteria are negatively correlated, suggesting genomic streamlining during thermal adaptation


Sabath, Niv; Ferrada, Evandro; Barve, Aditya; Wagner, Andreas (2013). Growth temperature and genome size in bacteria are negatively correlated, suggesting genomic streamlining during thermal adaptation. Genome Biology and Evolution, 5(5):966-977.

Abstract

Prokaryotic genomes are small and compact. Either this feature is caused by neutral evolution or by natural selection favoring small genomes-genome streamlining. Three separate prior lines of evidence argue against streamlining for most prokaryotes. We find that the same three lines of evidence argue for streamlining in the genomes of thermophile bacteria. Specifically, with increasing habitat temperature and decreasing genome size, the proportion of genomic DNA in intergenic regions decreases. Furthermore, with increasing habitat temperature, generation time decreases. Genome-wide selective constraints do not decrease as in the reduced genomes of host-associated species. Reduced habitat variability is not a likely explanation for the smaller genomes of thermophiles. Genome size may be an indirect target of selection due to its association with cell volume. We use metabolic modeling to demonstrate that known changes in cell structure and physiology at high temperature can provide a selective advantage to reduce cell volume at high temperatures.

Abstract

Prokaryotic genomes are small and compact. Either this feature is caused by neutral evolution or by natural selection favoring small genomes-genome streamlining. Three separate prior lines of evidence argue against streamlining for most prokaryotes. We find that the same three lines of evidence argue for streamlining in the genomes of thermophile bacteria. Specifically, with increasing habitat temperature and decreasing genome size, the proportion of genomic DNA in intergenic regions decreases. Furthermore, with increasing habitat temperature, generation time decreases. Genome-wide selective constraints do not decrease as in the reduced genomes of host-associated species. Reduced habitat variability is not a likely explanation for the smaller genomes of thermophiles. Genome size may be an indirect target of selection due to its association with cell volume. We use metabolic modeling to demonstrate that known changes in cell structure and physiology at high temperature can provide a selective advantage to reduce cell volume at high temperatures.

Statistics

Citations

23 citations in Web of Science®
26 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

31 downloads since deposited on 20 Jan 2014
7 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:5 April 2013
Deposited On:20 Jan 2014 09:07
Last Modified:04 Aug 2017 15:54
Publisher:Oxford University Press
ISSN:1759-6653
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/gbe/evt050
PubMed ID:23563968

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 534kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations