Header

UZH-Logo

Maintenance Infos

Are tropical small mammals physiologically vulnerable to Arrhenius effects and climate change?


Lovegrove, Barry G; et al; Ruf, Thomas (2014). Are tropical small mammals physiologically vulnerable to Arrhenius effects and climate change? Physiological and Biochemical Zoology, 87(1):30-45.

Abstract

There is some urgency in the necessity to incorporate physiological data into mechanistic, trait-based, demographic climate change models. Physiological responses at the individual level provide the mechanistic link between environmental changes and individual performances and hence population dynamics. Here we consider the causal relationship between ambient temperature (Ta) and metabolic rate (MR), namely, the Arrhenius effect, which is directly affected by global warming through increases in average global air temperatures and the increase in the frequency and intensity of extreme climate events. We measured and collated data for several small, free-ranging tropical arboreal mammals and evaluated their vulnerability to Arrhenius effects and putative heat stress associated with climate change. Skin temperatures (Tskin) were obtained from free-ranging tarsiers (Tarsius syrichta) on Bohol Island, Philippines. Core body temperature (Tb) was obtained from the greater hedgehog tenrec (Setifer setosus) and the gray brown mouse lemur (Microcebus ravelobensis) from Ankarafantsika, Madagascar. Tskin for another mouse lemur, Microcebus griseorufus, was obtained from the literature. All four species showed evidence of hyperthermia during the daytime rest phase in the form of either Tskin or Tb that was higher than the normothermic Tb during the nighttime active phase. Potentially, tropical arboreal mammals with the lowest MRs and Tb, such as tarsiers, are the most vulnerable to sustained heat stress because their Tb is already close to Ta. Climate change may involve increases in MRs due to Arrhenius effects, especially during the rest phase or during torpor and hibernation. The most likely outcome of increased Arrhenius effects with climate change will be an increase in energy expenditure at the expense of other critical functions such as reproduction or growth and will thus affect fitness. However, we propose that these hypothetical Arrhenius costs can be, and in some species probably are, offset by the use of hyperthermic daily torpor, that is, hypometabolism at high Ta.

Abstract

There is some urgency in the necessity to incorporate physiological data into mechanistic, trait-based, demographic climate change models. Physiological responses at the individual level provide the mechanistic link between environmental changes and individual performances and hence population dynamics. Here we consider the causal relationship between ambient temperature (Ta) and metabolic rate (MR), namely, the Arrhenius effect, which is directly affected by global warming through increases in average global air temperatures and the increase in the frequency and intensity of extreme climate events. We measured and collated data for several small, free-ranging tropical arboreal mammals and evaluated their vulnerability to Arrhenius effects and putative heat stress associated with climate change. Skin temperatures (Tskin) were obtained from free-ranging tarsiers (Tarsius syrichta) on Bohol Island, Philippines. Core body temperature (Tb) was obtained from the greater hedgehog tenrec (Setifer setosus) and the gray brown mouse lemur (Microcebus ravelobensis) from Ankarafantsika, Madagascar. Tskin for another mouse lemur, Microcebus griseorufus, was obtained from the literature. All four species showed evidence of hyperthermia during the daytime rest phase in the form of either Tskin or Tb that was higher than the normothermic Tb during the nighttime active phase. Potentially, tropical arboreal mammals with the lowest MRs and Tb, such as tarsiers, are the most vulnerable to sustained heat stress because their Tb is already close to Ta. Climate change may involve increases in MRs due to Arrhenius effects, especially during the rest phase or during torpor and hibernation. The most likely outcome of increased Arrhenius effects with climate change will be an increase in energy expenditure at the expense of other critical functions such as reproduction or growth and will thus affect fitness. However, we propose that these hypothetical Arrhenius costs can be, and in some species probably are, offset by the use of hyperthermic daily torpor, that is, hypometabolism at high Ta.

Statistics

Citations

17 citations in Web of Science®
20 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2014
Deposited On:11 Mar 2014 13:46
Last Modified:21 Dec 2016 08:26
Publisher:University of Chicago Press
ISSN:1522-2152
Publisher DOI:https://doi.org/10.1086/673313
PubMed ID:24457919

Download

Full text not available from this repository.
View at publisher

Article Networks

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations