Header

UZH-Logo

Maintenance Infos

Enhancement of cell viability after treatment with polyunsaturated fatty acids


Bartl, Jasmin; Walitza, Susanne; Grünblatt, Edna (2014). Enhancement of cell viability after treatment with polyunsaturated fatty acids. Neuroscience Letters, 559:56-60.

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is highly prevalent in children and adolescents and both environmental and genetic factors play major roles. Polyunsaturated fatty acids (PUFAs) are postulated to contribute to the development of the infant brain and an imbalance in these may increase the risk of ADHD. In recent clinical studies, supplementation with PUFAs improved symptoms of ADHD in some cases. Similarly, some beneficial effects were observed with PUFA treatment in neuronal cell cultures. Therefore, in this study, we hypothesized that a specific PUFA combination (available on the market as Equazen™ [Vifor Pharma, Switzerland]) along with iron, zinc, or vitamin B5 (vitB5) would produce an additive beneficial effect on the viability of rat pheochromocytoma-12 dopaminergic cells. The specific PUFA combination alone, as well as added to each of the three nutrients, was tested in a dose-response manner. The specific PUFAs significantly improved cell viability, starting at very low doses (100pM) from 60h up to 90h; while the combined treatment with vitB5 and minerals did not provide additional benefit. Our results confirmed the beneficial effect of the specific PUFAs on neuronal cell viability; although supplementation with minerals and vitB5 did not enhance this effect.

Abstract

Attention-deficit/hyperactivity disorder (ADHD) is highly prevalent in children and adolescents and both environmental and genetic factors play major roles. Polyunsaturated fatty acids (PUFAs) are postulated to contribute to the development of the infant brain and an imbalance in these may increase the risk of ADHD. In recent clinical studies, supplementation with PUFAs improved symptoms of ADHD in some cases. Similarly, some beneficial effects were observed with PUFA treatment in neuronal cell cultures. Therefore, in this study, we hypothesized that a specific PUFA combination (available on the market as Equazen™ [Vifor Pharma, Switzerland]) along with iron, zinc, or vitamin B5 (vitB5) would produce an additive beneficial effect on the viability of rat pheochromocytoma-12 dopaminergic cells. The specific PUFA combination alone, as well as added to each of the three nutrients, was tested in a dose-response manner. The specific PUFAs significantly improved cell viability, starting at very low doses (100pM) from 60h up to 90h; while the combined treatment with vitB5 and minerals did not provide additional benefit. Our results confirmed the beneficial effect of the specific PUFAs on neuronal cell viability; although supplementation with minerals and vitB5 did not enhance this effect.

Statistics

Citations

3 citations in Web of Science®
2 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 31 Jan 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Psychiatric University Hospital Zurich > Center for Child and Adolescent Psychiatry
04 Faculty of Medicine > Neuroscience Center Zurich
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2014
Deposited On:31 Jan 2014 13:53
Last Modified:07 Dec 2017 08:19
Publisher:Elsevier
ISSN:0304-3940
Publisher DOI:https://doi.org/10.1016/j.neulet.2013.11.023
PubMed ID:24269370

Download