Header

UZH-Logo

Maintenance Infos

Support of personalized medicine through risk-stratified treatment recommendations - an environmental scan of clinical practice guidelines


Yu, Tsung; Vollenweider, Daniela; Varadhan, Ravi; Li, Tianjing; Boyd, Cynthia; Puhan, Milo A (2013). Support of personalized medicine through risk-stratified treatment recommendations - an environmental scan of clinical practice guidelines. BMC Medicine, 11:7.

Abstract

BACKGROUND: Risk-stratified treatment recommendations facilitate treatment decision-making that balances patient-specific risks and preferences. It is unclear if and how such recommendations are developed in clinical practice guidelines (CPGs). Our aim was to assess if and how CPGs develop risk-stratified treatment recommendations for the prevention or treatment of common chronic diseases. METHODS: We searched the United States National Guideline Clearinghouse for US, Canadian and National Institute for Health and Clinical Excellence (United Kingdom) CPGs for heart disease, stroke, cancer, chronic obstructive pulmonary disease and diabetes that make risk-stratified treatment recommendations. We included only those CPGs that made risk-stratified treatment recommendations based on risk assessment tools. Two reviewers independently identified CPGs and extracted information on recommended risk assessment tools; type of evidence about treatment benefits and harms; methods for linking risk estimates to treatment evidence and for developing treatment thresholds; and consideration of patient preferences. RESULTS: We identified 20 CPGs that made risk-stratified treatment recommendations out of 133 CPGs that made any type of treatment recommendations for the chronic diseases considered in this study. Of the included 20 CPGs, 16 (80%) used evidence about treatment benefits from randomized controlled trials, meta-analyses or other guidelines, and the source of evidence was unclear in the remaining four (20%) CPGs. Nine CPGs (45%) used evidence on harms from randomized controlled trials or observational studies, while 11 CPGs (55%) did not clearly refer to harms. Nine CPGs (45%) explained how risk prediction and evidence about treatments effects were linked (for example, applying estimates of relative risk reductions to absolute risks), but only one CPG (5%) assessed benefit and harm quantitatively and three CPGs (15%) explicitly reported consideration of patient preferences. CONCLUSIONS: Only a small proportion of CPGs for chronic diseases make risk-stratified treatment recommendations with a focus on heart disease and stroke prevention, diabetes and breast cancer. For most CPGs it is unclear how risk-stratified treatment recommendations were developed. As a consequence, it is uncertain if CPGs support patients and physicians in finding an acceptable benefit- harm balance that reflects both profile-specific outcome risks and preferences.

Abstract

BACKGROUND: Risk-stratified treatment recommendations facilitate treatment decision-making that balances patient-specific risks and preferences. It is unclear if and how such recommendations are developed in clinical practice guidelines (CPGs). Our aim was to assess if and how CPGs develop risk-stratified treatment recommendations for the prevention or treatment of common chronic diseases. METHODS: We searched the United States National Guideline Clearinghouse for US, Canadian and National Institute for Health and Clinical Excellence (United Kingdom) CPGs for heart disease, stroke, cancer, chronic obstructive pulmonary disease and diabetes that make risk-stratified treatment recommendations. We included only those CPGs that made risk-stratified treatment recommendations based on risk assessment tools. Two reviewers independently identified CPGs and extracted information on recommended risk assessment tools; type of evidence about treatment benefits and harms; methods for linking risk estimates to treatment evidence and for developing treatment thresholds; and consideration of patient preferences. RESULTS: We identified 20 CPGs that made risk-stratified treatment recommendations out of 133 CPGs that made any type of treatment recommendations for the chronic diseases considered in this study. Of the included 20 CPGs, 16 (80%) used evidence about treatment benefits from randomized controlled trials, meta-analyses or other guidelines, and the source of evidence was unclear in the remaining four (20%) CPGs. Nine CPGs (45%) used evidence on harms from randomized controlled trials or observational studies, while 11 CPGs (55%) did not clearly refer to harms. Nine CPGs (45%) explained how risk prediction and evidence about treatments effects were linked (for example, applying estimates of relative risk reductions to absolute risks), but only one CPG (5%) assessed benefit and harm quantitatively and three CPGs (15%) explicitly reported consideration of patient preferences. CONCLUSIONS: Only a small proportion of CPGs for chronic diseases make risk-stratified treatment recommendations with a focus on heart disease and stroke prevention, diabetes and breast cancer. For most CPGs it is unclear how risk-stratified treatment recommendations were developed. As a consequence, it is uncertain if CPGs support patients and physicians in finding an acceptable benefit- harm balance that reflects both profile-specific outcome risks and preferences.

Statistics

Citations

9 citations in Web of Science®
18 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

27 downloads since deposited on 22 Jan 2014
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Epidemiology, Biostatistics and Prevention Institute (EBPI)
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2013
Deposited On:22 Jan 2014 16:44
Last Modified:03 Aug 2017 16:17
Publisher:BioMed Central
ISSN:1741-7015
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1741-7015-11-7
PubMed ID:23302096

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 362kB
View at publisher
Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations