Header

UZH-Logo

Maintenance Infos

An active learning approach to home heating in the smart grid


Shann, Michael; Seuken, Sven (2013). An active learning approach to home heating in the smart grid. In: International Joint Conference on Artificial Intelligence (IJCAI), Beijing, China, 3 August 2013 - 9 August 2013, 2892-2899.

Abstract

A key issue for the realization of the smart grid vision is the implementation of effective demand-side management. One possible approach involves exposing dynamic energy prices to end-users. In this paper, we consider a resulting problem on the user’s side: how to adaptively heat a home given dynamic prices. The user faces the challenge of having to react to dynamic prices in real time, trading off his comfort with the costs of heating his home to a certain temperature. We propose an active learning approach to adjust the home temperature in a semiautomatic way. Our algorithm learns the user’s preferences over time and automatically adjusts the temperature in real-time as prices change. In addition, the algorithm asks the user for feedback once a day. To find the best query time, the algorithm solves an optimal stopping problem. Via simulations, we show that our algorithm learns users’ preferences quickly, and that using the expected utility loss as the query criterion outperforms standard approaches from the active learning literature.

Abstract

A key issue for the realization of the smart grid vision is the implementation of effective demand-side management. One possible approach involves exposing dynamic energy prices to end-users. In this paper, we consider a resulting problem on the user’s side: how to adaptively heat a home given dynamic prices. The user faces the challenge of having to react to dynamic prices in real time, trading off his comfort with the costs of heating his home to a certain temperature. We propose an active learning approach to adjust the home temperature in a semiautomatic way. Our algorithm learns the user’s preferences over time and automatically adjusts the temperature in real-time as prices change. In addition, the algorithm asks the user for feedback once a day. To find the best query time, the algorithm solves an optimal stopping problem. Via simulations, we show that our algorithm learns users’ preferences quickly, and that using the expected utility loss as the query criterion outperforms standard approaches from the active learning literature.

Statistics

Citations

Altmetrics

Downloads

87 downloads since deposited on 16 Jan 2014
40 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Conference or Workshop Item (Paper), refereed, original work
Communities & Collections:03 Faculty of Economics > Department of Informatics
Dewey Decimal Classification:000 Computer science, knowledge & systems
Language:English
Event End Date:9 August 2013
Deposited On:16 Jan 2014 07:07
Last Modified:15 Aug 2017 08:10
Publisher:IJCAI
ISBN:978-1-57735-633-2
Official URL:http://dl.acm.org/citation.cfm?id=2540128.2540545
Other Identification Number:merlin-id:9041

Download

Preview Icon on Download
Preview
Filetype: PDF
Size: 806kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations