Header

UZH-Logo

Maintenance Infos

Diversity of cobalamin riboswitches in the corrinoid-producing organohalide respirer Desulfitobacterium hafniense


Choudhary, P K; Duret, A; Rohrbach-Brandt, E; Holliger, C; Sigel, Roland K O; Maillard, J (2013). Diversity of cobalamin riboswitches in the corrinoid-producing organohalide respirer Desulfitobacterium hafniense. Journal of Bacteriology, 195(22):5186-5195.

Abstract

The strategic adaptation of prokaryotes in polluted niches involves the efficient regulation of their metabolism. The obligate anaerobe and metabolically versatile Desulfitobacterium hafniense reductively dechlorinates halogenated organic compounds (so-called organohalides). Some D. hafniense strains carry out organohalide respiration (OHR), a process which requires the use of corrinoid as a cofactor in reductive dehalogenases, the key enzymes in OHR. We report here the diversity of the cobalamin riboswitches that possibly regulate the corrinoid metabolism for D. hafniense. The analysis of available D. hafniense genomes indicates the presence of eighteen cobalamin riboswitches located upstream of genes whose products are mainly involved in corrinoid biosynthesis and transport. To get insight into their function, the secondary structures of three of these RNA elements were predicted by Mfold as well as analyzed by in-line probing. These RNA elements display diversity in their structural elements as well as exhibit varying affinities towards adenosylcobalamin that possibly relates to their role in the regulation of corrinoid metabolism. Furthermore, adenosylcobalamin-induced in vivo repression of RNA synthesis of the downstream located genes indicates that the corrinoid transporters and biosynthetic enzymes in D. hafniense strain TCE1 are regulated at the transcriptional level. Taken together, the riboswitch-mediated regulation of the complex corrinoid metabolism in D. hafniense could be of crucial significance in environments polluted with organohalides to monitor their intracellular corrinoid level as well as to co-exist with corrinoid-auxotroph OHR bacteria.

Abstract

The strategic adaptation of prokaryotes in polluted niches involves the efficient regulation of their metabolism. The obligate anaerobe and metabolically versatile Desulfitobacterium hafniense reductively dechlorinates halogenated organic compounds (so-called organohalides). Some D. hafniense strains carry out organohalide respiration (OHR), a process which requires the use of corrinoid as a cofactor in reductive dehalogenases, the key enzymes in OHR. We report here the diversity of the cobalamin riboswitches that possibly regulate the corrinoid metabolism for D. hafniense. The analysis of available D. hafniense genomes indicates the presence of eighteen cobalamin riboswitches located upstream of genes whose products are mainly involved in corrinoid biosynthesis and transport. To get insight into their function, the secondary structures of three of these RNA elements were predicted by Mfold as well as analyzed by in-line probing. These RNA elements display diversity in their structural elements as well as exhibit varying affinities towards adenosylcobalamin that possibly relates to their role in the regulation of corrinoid metabolism. Furthermore, adenosylcobalamin-induced in vivo repression of RNA synthesis of the downstream located genes indicates that the corrinoid transporters and biosynthetic enzymes in D. hafniense strain TCE1 are regulated at the transcriptional level. Taken together, the riboswitch-mediated regulation of the complex corrinoid metabolism in D. hafniense could be of crucial significance in environments polluted with organohalides to monitor their intracellular corrinoid level as well as to co-exist with corrinoid-auxotroph OHR bacteria.

Statistics

Citations

6 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Chemistry
Dewey Decimal Classification:540 Chemistry
Language:Akan
Date:2013
Deposited On:03 Feb 2014 13:45
Last Modified:20 May 2017 07:08
Publisher:American Society for Microbiology
ISSN:0021-9193
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1128/JB.00730-13

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations