Header

UZH-Logo

Maintenance Infos

Osteoanabolic effect of alendronate and zoledronate on bone marrow stromal cells (BMSCs) isolated from aged female osteoporotic patients and its implications for their mode of action in the treatment of age-related bone loss


Lindtner, R A; Tiaden, André N; Genelin, K; Ebner, H L; Manzl, C; Klawitter, Marina; Sitte, I; von Rechenberg, Brigitte; Blauth, M; Richards, Peter (2014). Osteoanabolic effect of alendronate and zoledronate on bone marrow stromal cells (BMSCs) isolated from aged female osteoporotic patients and its implications for their mode of action in the treatment of age-related bone loss. Osteoporosis International, 25(3):1151-1161.

Abstract

In the present study, we evaluated the potential for aminobisphosphonates to enhance the development of bone-forming osteoblasts from progenitor cells isolated from aged female osteoporotic patients. The aminobisphosphonates tested significantly enhanced osteoblast formation and thus lend further insights into their possible mode of action in the treatment of osteoporosis.
INTRODUCTION: The primary aim of this study was to evaluate the influence of aminobisphosphonates on the osteogenesis of human bone marrow stromal cells (hBMSCs) and mineralization of differentiating bone-forming cells isolated from osteoporotic patients.
METHODS: The influence of aminobisphosphonate treatment on hBMSC osteogenesis was assessed by the quantitative measurement of alkaline phosphatase (ALP) activity, in addition to quantitative reverse transcription polymerase chain reaction and Western blot analysis of known osteogenic markers. Mineralized matrix formation by hBMSC-derived osteoblasts was visualized and quantified using Alizarin red staining.
RESULTS: hBMSC cultures treated with osteogenic medium supplemented with zoledronate demonstrated a significant increase in Alizarin red staining after 3 weeks as compared to cells cultured in osteogenic medium alone. Similarly, cultures of differentiating hBMSCs isolated from patients receiving alendronate treatment also demonstrated an increased propensity for mineralization, even in the absence of further in vitro stimulation by zoledronate. The stimulatory effects of aminobisphosphonate treatment on hBMSC-derived osteoblast-mediated mineralization were independent of any alterations in ALP activity, although significant decreases in the expression levels of osteopontin (SPP1) were evident in hBMSCs following exposure to aminobisphosphonates. Further analysis including Western blotting and loss-of-function studies revealed osteopontin as having a negative influence on the mineralization of differentiating osteoporotic bone-forming cells.
CONCLUSIONS: The results presented here demonstrate for the first time that aminobisphosphonate treatment of osteoporotic hBMSCs enhances their capacity for osteoblast formation and subsequent mineral deposition, thus supporting the concept of aminobisphosphonates as having an osteoanabolic effect in osteoporosis.

Abstract

In the present study, we evaluated the potential for aminobisphosphonates to enhance the development of bone-forming osteoblasts from progenitor cells isolated from aged female osteoporotic patients. The aminobisphosphonates tested significantly enhanced osteoblast formation and thus lend further insights into their possible mode of action in the treatment of osteoporosis.
INTRODUCTION: The primary aim of this study was to evaluate the influence of aminobisphosphonates on the osteogenesis of human bone marrow stromal cells (hBMSCs) and mineralization of differentiating bone-forming cells isolated from osteoporotic patients.
METHODS: The influence of aminobisphosphonate treatment on hBMSC osteogenesis was assessed by the quantitative measurement of alkaline phosphatase (ALP) activity, in addition to quantitative reverse transcription polymerase chain reaction and Western blot analysis of known osteogenic markers. Mineralized matrix formation by hBMSC-derived osteoblasts was visualized and quantified using Alizarin red staining.
RESULTS: hBMSC cultures treated with osteogenic medium supplemented with zoledronate demonstrated a significant increase in Alizarin red staining after 3 weeks as compared to cells cultured in osteogenic medium alone. Similarly, cultures of differentiating hBMSCs isolated from patients receiving alendronate treatment also demonstrated an increased propensity for mineralization, even in the absence of further in vitro stimulation by zoledronate. The stimulatory effects of aminobisphosphonate treatment on hBMSC-derived osteoblast-mediated mineralization were independent of any alterations in ALP activity, although significant decreases in the expression levels of osteopontin (SPP1) were evident in hBMSCs following exposure to aminobisphosphonates. Further analysis including Western blotting and loss-of-function studies revealed osteopontin as having a negative influence on the mineralization of differentiating osteoporotic bone-forming cells.
CONCLUSIONS: The results presented here demonstrate for the first time that aminobisphosphonate treatment of osteoporotic hBMSCs enhances their capacity for osteoblast formation and subsequent mineral deposition, thus supporting the concept of aminobisphosphonates as having an osteoanabolic effect in osteoporosis.

Statistics

Citations

11 citations in Web of Science®
12 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 03 Feb 2014
13 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
05 Vetsuisse Faculty > Center for Applied Biotechnology and Molecular Medicine
05 Vetsuisse Faculty > Veterinary Clinic > Equine Department
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2014
Deposited On:03 Feb 2014 16:21
Last Modified:07 Dec 2017 08:29
Publisher:Springer
ISSN:0937-941X
Additional Information:The final publication is available at link.springer.com
Publisher DOI:https://doi.org/10.1007/s00198-013-2494-3
PubMed ID:23974861

Download

Download PDF  'Osteoanabolic effect of alendronate and zoledronate on bone marrow stromal cells (BMSCs) isolated from aged female osteoporotic patients and its implications for their mode of action in the treatment of age-related bone loss'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher