Header

UZH-Logo

Maintenance Infos

Biomechanical time dependency of the periodontal ligament: a combined experimental and numerical approach


Papadopoulou, Konstantina; Hasan, Istabrak; Keilig, Ludger; Reimann, Susanne; Eliades, Theodore; Jäger, Andreas; Deschner, James; Bourauel, Christoph (2013). Biomechanical time dependency of the periodontal ligament: a combined experimental and numerical approach. European Journal of Orthodontics, 35(6):811-818.

Abstract

The analysis of the non-linear and time-dependent viscoelasticity of the periodontal ligament (PDL) enables a better understanding of the biomechanical features of the key regulator tissue for tooth movement. This is of great significance in the field of orthodontics as targeted tooth movement remains still one of the main goals to accomplish. The investigation of biomechanical aspects of the PDL function, a difficult area of research, helps towards this direction. After analysing the time-dependent biomechanical properties of pig PDL specimens in an in vitro experimental study, it was possible to confirm that PDL has a viscoelastic anisotropic behaviour. Three-dimensional finite element models of mini-pig mandibular premolars with surrounding tissues were developed, based on micro-computed tomography (μCT) data of the experimental specimens. Tooth mobility was numerically analysed under the same force systems as used in the experiment. A bilinear material parameter set was assumed to simulate tooth displacements. The numerical force/displacement curves were fitted to the experimental curves by repeatedly calculating tooth displacements of 0.2mm varying the loading velocities and the parameters, which describe the nonlinearity. The experimental results showed a good agreement with the numerical calculations. Mean values of Young's moduli E1, E2 and ultimate strain ε12 were derived for the elastic behaviour of the PDL for all loading velocities. E1 and E2 values increased with increasing the velocity, while ε12 remained relatively stable. A bilinear approximation of material properties of the PDL is a suitable description of measured force/displacement diagrams. The numerical results can be used to describe mechanical processes, especially stress-strain distributions in the PDL, accurately. Further development of suitable modelling assumptions for the response of PDL under load would be instrumental to orthodontists and engineers for designing more predictable orthodontic force systems and appliances.

Abstract

The analysis of the non-linear and time-dependent viscoelasticity of the periodontal ligament (PDL) enables a better understanding of the biomechanical features of the key regulator tissue for tooth movement. This is of great significance in the field of orthodontics as targeted tooth movement remains still one of the main goals to accomplish. The investigation of biomechanical aspects of the PDL function, a difficult area of research, helps towards this direction. After analysing the time-dependent biomechanical properties of pig PDL specimens in an in vitro experimental study, it was possible to confirm that PDL has a viscoelastic anisotropic behaviour. Three-dimensional finite element models of mini-pig mandibular premolars with surrounding tissues were developed, based on micro-computed tomography (μCT) data of the experimental specimens. Tooth mobility was numerically analysed under the same force systems as used in the experiment. A bilinear material parameter set was assumed to simulate tooth displacements. The numerical force/displacement curves were fitted to the experimental curves by repeatedly calculating tooth displacements of 0.2mm varying the loading velocities and the parameters, which describe the nonlinearity. The experimental results showed a good agreement with the numerical calculations. Mean values of Young's moduli E1, E2 and ultimate strain ε12 were derived for the elastic behaviour of the PDL for all loading velocities. E1 and E2 values increased with increasing the velocity, while ε12 remained relatively stable. A bilinear approximation of material properties of the PDL is a suitable description of measured force/displacement diagrams. The numerical results can be used to describe mechanical processes, especially stress-strain distributions in the PDL, accurately. Further development of suitable modelling assumptions for the response of PDL under load would be instrumental to orthodontists and engineers for designing more predictable orthodontic force systems and appliances.

Statistics

Citations

Dimensions.ai Metrics
10 citations in Web of Science®
10 citations in Scopus®
11 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 03 Feb 2014
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Dental Medicine > Clinic for Orthodontics and Pediatric Dentistry
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2013
Deposited On:03 Feb 2014 16:59
Last Modified:20 Jul 2018 16:51
Publisher:Oxford University Press
ISSN:0141-5387
OA Status:Green
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/ejo/cjs103
PubMed ID:23314330

Download

Download PDF  'Biomechanical time dependency of the periodontal ligament: a combined experimental and numerical approach'.
Preview
Content: Published Version
Language: English
Filetype: PDF (Nationallizenz 142-005)
Size: 1MB
View at publisher