Header

UZH-Logo

Maintenance Infos

ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases


Boisson-Dernier, Aurélien; Lituiev, Dmytro S; Nestorova, Anna; Franck, Christina Maria; Thirugnanarajah, Sharme; Grossniklaus, Ueli (2013). ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases. PLoS Biology, 11(11):e1001719.

Abstract

It has become increasingly apparent that the extracellular matrix (ECM), which in plants corresponds to the cell wall, can influence intracellular activities in ways that go far beyond their supposedly passive mechanical support. In plants, growing cells use mechanisms sensing cell wall integrity to coordinate cell wall performance with the internal growth machinery to avoid growth cessation or loss of integrity. How this coordination precisely works is unknown. Previously, we reported that in the tip-growing pollen tube the ANXUR receptor-like kinases (RLKs) of the CrRLK1L subfamily are essential to sustain growth without loss of cell wall integrity in Arabidopsis. Here, we show that over-expression of the ANXUR RLKs inhibits growth by over-activating exocytosis and the over-accumulation of secreted cell wall material. Moreover, the characterization of mutations in two partially redundant pollen-expressed NADPH oxidases coupled with genetic interaction studies demonstrate that the ANXUR RLKs function upstream of these NADPH oxidases. Using the H₂O₂-sensitive HyPer and the Ca²⁺-sensitive YC3.60 sensors in NADPH oxidase-deficient mutants, we reveal that NADPH oxidases generate tip-localized, pulsating H₂O₂ production that functions, possibly through Ca²⁺ channel activation, to maintain a steady tip-focused Ca²⁺ gradient during growth. Our findings support a model where ECM-sensing receptors regulate reactive oxygen species production, Ca²⁺ homeostasis, and exocytosis to coordinate ECM-performance with the internal growth machinery.

Abstract

It has become increasingly apparent that the extracellular matrix (ECM), which in plants corresponds to the cell wall, can influence intracellular activities in ways that go far beyond their supposedly passive mechanical support. In plants, growing cells use mechanisms sensing cell wall integrity to coordinate cell wall performance with the internal growth machinery to avoid growth cessation or loss of integrity. How this coordination precisely works is unknown. Previously, we reported that in the tip-growing pollen tube the ANXUR receptor-like kinases (RLKs) of the CrRLK1L subfamily are essential to sustain growth without loss of cell wall integrity in Arabidopsis. Here, we show that over-expression of the ANXUR RLKs inhibits growth by over-activating exocytosis and the over-accumulation of secreted cell wall material. Moreover, the characterization of mutations in two partially redundant pollen-expressed NADPH oxidases coupled with genetic interaction studies demonstrate that the ANXUR RLKs function upstream of these NADPH oxidases. Using the H₂O₂-sensitive HyPer and the Ca²⁺-sensitive YC3.60 sensors in NADPH oxidase-deficient mutants, we reveal that NADPH oxidases generate tip-localized, pulsating H₂O₂ production that functions, possibly through Ca²⁺ channel activation, to maintain a steady tip-focused Ca²⁺ gradient during growth. Our findings support a model where ECM-sensing receptors regulate reactive oxygen species production, Ca²⁺ homeostasis, and exocytosis to coordinate ECM-performance with the internal growth machinery.

Statistics

Citations

Dimensions.ai Metrics
89 citations in Web of Science®
91 citations in Scopus®
104 citations in Microsoft Academic
Google Scholar™

Altmetrics

Downloads

77 downloads since deposited on 06 Feb 2014
19 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Plant and Microbial Biology
07 Faculty of Science > Zurich-Basel Plant Science Center
Dewey Decimal Classification:580 Plants (Botany)
Language:English
Date:2013
Deposited On:06 Feb 2014 14:13
Last Modified:16 Feb 2018 19:14
Publisher:Public Library of Science (PLoS)
ISSN:1544-9173
OA Status:Gold
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pbio.1001719
PubMed ID:24302886

Download

Download PDF  'ANXUR receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via NADPH oxidases'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher
Licence: Creative Commons: Attribution 3.0 Unported (CC BY 3.0)