Header

UZH-Logo

Maintenance Infos

Diffusion tensor imaging of the kidneys: Influence of b-Value and number of encoding directions on image quality and diffusion tensor parameters


Chuck, Natalie C; Steidle, Günther; Blume, Iris; Fischer, Michael A; Nanz, Daniel; Boss, Andreas (2013). Diffusion tensor imaging of the kidneys: Influence of b-Value and number of encoding directions on image quality and diffusion tensor parameters. Journal of Clinical Imaging Science, 3(4):53.

Abstract

OBJECTIVES: The purpose of this study was to evaluate to which degree investment of acquisition time in more encoding directions leads to better image quality (IQ) and what influence the number of encoding directions and the choice of b-values have on renal diffusion tensor imaging (DTI) parameters.
MATERIAL AND METHODS: Eight healthy volunteers (32.3 y ± 5.1 y) consented to an examination in a 1.5T whole-body MR scanner. Coronal DTI data sets of the kidneys were acquired with systematic variation of b-values (50, 150, 300, 500, and 700 s/mm(2)) and number of diffusion-encoding directions (6, 15, and 32) using a respiratory-triggered echo-planar sequence (TR/TE 1500 ms/67 ms, matrix size 128 × 128). Additionally, two data sets with more than two b-values were acquired (0, 150, and 300 s/mm(2) and all six b-values). Parametrical maps were calculated on a pixel-by-pixel basis. Image quality was determined with a reader score.
RESULTS: Best IQ was visually assessed for images acquired with 15 and 32 encoding directions, whereas images acquired with six directions had significantly lower IQ ratings. Image quality, fractional anisotropy, and mean diffusivity only varied insignificantly for b-values between 300 and 500 s/mm(2). In the renal medulla fractional anisotropy (FA) values between 0.43 and 0.46 and mean diffusivity (MD) values between 1.8-2.1 × 10(-3) mm(2)/s were observed. In the renal cortex, the corresponding ranges were 0.24-0.25 (FA) and 2.2-2.8 × 10(-3) mm(2)/s (MD). Including b-values below 300 s/mm(2), notably higher MD values were observed, while FA remained constant. Susceptibility artifacts were more prominent in FA maps than in MD maps.
CONCLUSION: In DTI of the kidneys at 1.5T, the best compromise between acquisition time and resulting image quality seems the application of 15 encoding directions with b-values between 300 and 500 s/mm(2). Including lower b-values allows for assessment of fast diffusing spin components.

Abstract

OBJECTIVES: The purpose of this study was to evaluate to which degree investment of acquisition time in more encoding directions leads to better image quality (IQ) and what influence the number of encoding directions and the choice of b-values have on renal diffusion tensor imaging (DTI) parameters.
MATERIAL AND METHODS: Eight healthy volunteers (32.3 y ± 5.1 y) consented to an examination in a 1.5T whole-body MR scanner. Coronal DTI data sets of the kidneys were acquired with systematic variation of b-values (50, 150, 300, 500, and 700 s/mm(2)) and number of diffusion-encoding directions (6, 15, and 32) using a respiratory-triggered echo-planar sequence (TR/TE 1500 ms/67 ms, matrix size 128 × 128). Additionally, two data sets with more than two b-values were acquired (0, 150, and 300 s/mm(2) and all six b-values). Parametrical maps were calculated on a pixel-by-pixel basis. Image quality was determined with a reader score.
RESULTS: Best IQ was visually assessed for images acquired with 15 and 32 encoding directions, whereas images acquired with six directions had significantly lower IQ ratings. Image quality, fractional anisotropy, and mean diffusivity only varied insignificantly for b-values between 300 and 500 s/mm(2). In the renal medulla fractional anisotropy (FA) values between 0.43 and 0.46 and mean diffusivity (MD) values between 1.8-2.1 × 10(-3) mm(2)/s were observed. In the renal cortex, the corresponding ranges were 0.24-0.25 (FA) and 2.2-2.8 × 10(-3) mm(2)/s (MD). Including b-values below 300 s/mm(2), notably higher MD values were observed, while FA remained constant. Susceptibility artifacts were more prominent in FA maps than in MD maps.
CONCLUSION: In DTI of the kidneys at 1.5T, the best compromise between acquisition time and resulting image quality seems the application of 15 encoding directions with b-values between 300 and 500 s/mm(2). Including lower b-values allows for assessment of fast diffusing spin components.

Statistics

Citations

Altmetrics

Downloads

90 downloads since deposited on 07 Feb 2014
17 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, not refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Diagnostic and Interventional Radiology
Dewey Decimal Classification:610 Medicine & health
Language:English
Date:2013
Deposited On:07 Feb 2014 09:46
Last Modified:07 Dec 2017 08:33
Publisher:Medknow Publications
ISSN:2156-5597
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.4103/2156-7514.122323
PubMed ID:24404412

Download

Download PDF  'Diffusion tensor imaging of the kidneys: Influence of b-Value and number of encoding directions on image quality and diffusion tensor parameters'.
Preview
Content: Published Version
Filetype: PDF
Size: 3MB
View at publisher