Header

UZH-Logo

Maintenance Infos

PI3K/p110α inhibition selectively interferes with arterial thrombosis and neointima formation, but not re-endothelialization: potential implications for drug-eluting stent design


Holy, Erik W; Jakob, Philipp; Eickner, Thomas; Camici, Giovanni G; Beer, Jürg H; Akhmedov, Alexander; Sternberg, Katrin; Schmitz, Klaus-Peter; Lüscher, Thomas F; Tanner, Felix C (2014). PI3K/p110α inhibition selectively interferes with arterial thrombosis and neointima formation, but not re-endothelialization: potential implications for drug-eluting stent design. European Heart Journal, 35:808-820.

Abstract

BACKGROUND: Impaired re-endothelialization and stent thrombosis are a safety concern associated with drug-eluting stents (DES). PI3K/p110α controls cellular wound healing pathways, thereby representing an emerging drug target to modulate vascular homoeostasis after injury.
METHODS AND RESULTS: PI3K/p110α was inhibited by treatment with the small molecule inhibitor PIK75 or a specific siRNA. Arterial thrombosis, neointima formation, and re-endothelialization were studied in a murine carotid artery injury model. Proliferation and migration of human vascular smooth muscle cell (VSMC) and endothelial cell (EC) were assessed by cell number and Boyden chamber, respectively. Endothelial senescence was evaluated by the β-galactosidase assay, endothelial dysfunction by organ chambers for isometric tension. Arterial thrombus formation was delayed in mice treated with PIK75 when compared with controls. PIK75 impaired arterial expression and activity of tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1); in contrast, plasma clotting and platelet aggregation did not differ. In VSMC and EC, PIK75 inhibited expression and activity of TF and PAI-1. These effects occurred at the transcriptional level via the RhoA signalling cascade and the transcription factor NFkB. Furthermore, inhibition of PI3K/p110α with PIK75 or a specific siRNA selectively impaired proliferation and migration of VSMC while sparing EC completely. Treatment with PIK75 did not induce endothelial senescence nor inhibit endothelium-dependent relaxations. In line with this observation, treatment with PIK75 selectively inhibited neointima formation without affecting re-endothelialization following vascular injury.
CONCLUSION: Following vascular injury, PI3K/p110α inhibition selectively interferes with arterial thrombosis and neointima formation, but not re-endothelialization. Hence, PI3K/p110α represents an attractive new target in DES design.

Abstract

BACKGROUND: Impaired re-endothelialization and stent thrombosis are a safety concern associated with drug-eluting stents (DES). PI3K/p110α controls cellular wound healing pathways, thereby representing an emerging drug target to modulate vascular homoeostasis after injury.
METHODS AND RESULTS: PI3K/p110α was inhibited by treatment with the small molecule inhibitor PIK75 or a specific siRNA. Arterial thrombosis, neointima formation, and re-endothelialization were studied in a murine carotid artery injury model. Proliferation and migration of human vascular smooth muscle cell (VSMC) and endothelial cell (EC) were assessed by cell number and Boyden chamber, respectively. Endothelial senescence was evaluated by the β-galactosidase assay, endothelial dysfunction by organ chambers for isometric tension. Arterial thrombus formation was delayed in mice treated with PIK75 when compared with controls. PIK75 impaired arterial expression and activity of tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1); in contrast, plasma clotting and platelet aggregation did not differ. In VSMC and EC, PIK75 inhibited expression and activity of TF and PAI-1. These effects occurred at the transcriptional level via the RhoA signalling cascade and the transcription factor NFkB. Furthermore, inhibition of PI3K/p110α with PIK75 or a specific siRNA selectively impaired proliferation and migration of VSMC while sparing EC completely. Treatment with PIK75 did not induce endothelial senescence nor inhibit endothelium-dependent relaxations. In line with this observation, treatment with PIK75 selectively inhibited neointima formation without affecting re-endothelialization following vascular injury.
CONCLUSION: Following vascular injury, PI3K/p110α inhibition selectively interferes with arterial thrombosis and neointima formation, but not re-endothelialization. Hence, PI3K/p110α represents an attractive new target in DES design.

Statistics

Citations

13 citations in Web of Science®
16 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

2 downloads since deposited on 29 Jan 2015
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Center for Integrative Human Physiology
04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2014
Deposited On:29 Jan 2015 13:56
Last Modified:05 Apr 2016 17:28
Publisher:Oxford University Press
ISSN:0195-668X
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/eurheartj/eht496
PubMed ID:24334406

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations