Header

UZH-Logo

Maintenance Infos

The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1


Iversen, C; Lehner, A D; Mullane, N; Bidlas, E; Cleenwerck, I; Marugg, J; Fanning, S; Stephan, R; Joosten, H (2007). The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evolutionary Biology, 7:64.

Abstract

BACKGROUND: Enterobacter sakazakii is an opportunistic pathogen that can cause infections such as necrotizing enterocolitis, bacteraemia, meningitis and brain abscess/lesions. When the species was defined in 1980, 15 biogroups were described and it was suggested that these could represent multiple species. In this study the taxonomic relationship of strains described as E. sakazakii was further investigated. RESULTS: Strains identified as E. sakazakii were divided into separate groups on the basis of f-AFLP fingerprints, ribopatterns and full-length 16S rRNA gene sequences. DNA-DNA hybridizations revealed five genomospecies. The phenotypic profiles of the genomospecies were determined and biochemical markers identified. CONCLUSION: This study clarifies the taxonomy of E. sakazakii and proposes a reclassification of these organisms.

Abstract

BACKGROUND: Enterobacter sakazakii is an opportunistic pathogen that can cause infections such as necrotizing enterocolitis, bacteraemia, meningitis and brain abscess/lesions. When the species was defined in 1980, 15 biogroups were described and it was suggested that these could represent multiple species. In this study the taxonomic relationship of strains described as E. sakazakii was further investigated. RESULTS: Strains identified as E. sakazakii were divided into separate groups on the basis of f-AFLP fingerprints, ribopatterns and full-length 16S rRNA gene sequences. DNA-DNA hybridizations revealed five genomospecies. The phenotypic profiles of the genomospecies were determined and biochemical markers identified. CONCLUSION: This study clarifies the taxonomy of E. sakazakii and proposes a reclassification of these organisms.

Statistics

Citations

170 citations in Web of Science®
175 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

253 downloads since deposited on 11 Feb 2008
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Food Safety and Hygiene
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2007
Deposited On:11 Feb 2008 12:11
Last Modified:28 Aug 2017 10:55
Publisher:BioMed Central
ISSN:1471-2148
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1186/1471-2148-7-64
PubMed ID:17439656

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 797kB
View at publisher
Licence: Creative Commons: Attribution 2.0 Generic (CC BY 2.0)