Header

UZH-Logo

Maintenance Infos

Tuning of the Rashba effect in Pb quantum well states via a variable Schottky barrier


Slomski, Bartosz; Landolt, Gabriel; Bihlmayer, Gustav; Osterwalder, Jürg; Dil, J Hugo (2013). Tuning of the Rashba effect in Pb quantum well states via a variable Schottky barrier. Scientific Reports, 3:1963.

Abstract

Spin-orbit interaction (SOI) in low-dimensional systems results in the fascinating property of spin-momentum locking. In a Rashba system the inversion symmetry normal to the plane of a two-dimensional (2D) electron gas is broken, generating a Fermi surface spin texture reminiscent of spin vortices of different radii which can be exploited in spin-based devices. Crucial for any application is the possibility to tune the momentum splitting through an external parameter. Here we show that in Pb quantum well states (QWS) the Rashba splitting depends on the Si substrate doping. Our results imply a doping dependence of the Schottky barrier which shifts the Si valence band relative to the QWS. A similar shift can be achieved by an external gate voltage or ultra-short laser pulses, opening up the possibility of terahertz spintronics.

Abstract

Spin-orbit interaction (SOI) in low-dimensional systems results in the fascinating property of spin-momentum locking. In a Rashba system the inversion symmetry normal to the plane of a two-dimensional (2D) electron gas is broken, generating a Fermi surface spin texture reminiscent of spin vortices of different radii which can be exploited in spin-based devices. Crucial for any application is the possibility to tune the momentum splitting through an external parameter. Here we show that in Pb quantum well states (QWS) the Rashba splitting depends on the Si substrate doping. Our results imply a doping dependence of the Schottky barrier which shifts the Si valence band relative to the QWS. A similar shift can be achieved by an external gate voltage or ultra-short laser pulses, opening up the possibility of terahertz spintronics.

Statistics

Citations

13 citations in Web of Science®
10 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

150 downloads since deposited on 05 Feb 2014
25 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:2013
Deposited On:05 Feb 2014 15:34
Last Modified:05 Apr 2016 17:30
Publisher:Nature Publishing Group
ISSN:2045-2322
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/srep01963

Download

Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher
Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 977kB

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations