Header

UZH-Logo

Maintenance Infos

Attenuation of myocardial injury by HMGB1 blockade during ischemia/reperfusion is toll-like receptor 2-dependent


Mersmann, Jan; Iskandar, Franziska; Latsch, Kathrina; Habeck, Katharina; Sprunck, Vera; Zimmermann, René; Schumann, Ralf R; Zacharowski, Kai; Koch, Alexander (2013). Attenuation of myocardial injury by HMGB1 blockade during ischemia/reperfusion is toll-like receptor 2-dependent. Mediators of Inflammation, 2013:174168.

Abstract

Genetic or pharmacological ablation of toll-like receptor 2 (TLR2) protects against myocardial ischemia/reperfusion injury (MI/R). However, the endogenous ligand responsible for TLR2 activation has not yet been detected. The objective of this study was to identify HMGB1 as an activator of TLR2 signalling during MI/R. C57BL/6 wild-type (WT) or TLR2(-/-)-mice were injected with vehicle, HMGB1, or HMGB1 BoxA one hour before myocardial ischemia (30 min) and reperfusion (24 hrs). Infarct size, cardiac troponin T, leukocyte infiltration, HMGB1 release, TLR4-, TLR9-, and RAGE-expression were quantified. HMGB1 plasma levels were measured in patients undergoing coronary artery bypass graft (CABG) surgery. HMGB1 antagonist BoxA reduced cardiomyocyte necrosis during MI/R in WT mice, accompanied by reduced leukocyte infiltration. Injection of HMGB1 did, however, not increase infarct size in WT animals. In TLR2(-/-)-hearts, neither BoxA nor HMGB1 affected infarct size. No differences in RAGE and TLR9 expression could be detected, while TLR2(-/-)-mice display increased TLR4 and HMGB1 expression. Plasma levels of HMGB1 were increased MI/R in TLR2(-/-)-mice after CABG surgery in patients carrying a TLR2 polymorphism (Arg753Gln). We here provide evidence that absence of TLR2 signalling abrogates infarct-sparing effects of HMGB1 blockade.

Abstract

Genetic or pharmacological ablation of toll-like receptor 2 (TLR2) protects against myocardial ischemia/reperfusion injury (MI/R). However, the endogenous ligand responsible for TLR2 activation has not yet been detected. The objective of this study was to identify HMGB1 as an activator of TLR2 signalling during MI/R. C57BL/6 wild-type (WT) or TLR2(-/-)-mice were injected with vehicle, HMGB1, or HMGB1 BoxA one hour before myocardial ischemia (30 min) and reperfusion (24 hrs). Infarct size, cardiac troponin T, leukocyte infiltration, HMGB1 release, TLR4-, TLR9-, and RAGE-expression were quantified. HMGB1 plasma levels were measured in patients undergoing coronary artery bypass graft (CABG) surgery. HMGB1 antagonist BoxA reduced cardiomyocyte necrosis during MI/R in WT mice, accompanied by reduced leukocyte infiltration. Injection of HMGB1 did, however, not increase infarct size in WT animals. In TLR2(-/-)-hearts, neither BoxA nor HMGB1 affected infarct size. No differences in RAGE and TLR9 expression could be detected, while TLR2(-/-)-mice display increased TLR4 and HMGB1 expression. Plasma levels of HMGB1 were increased MI/R in TLR2(-/-)-mice after CABG surgery in patients carrying a TLR2 polymorphism (Arg753Gln). We here provide evidence that absence of TLR2 signalling abrogates infarct-sparing effects of HMGB1 blockade.

Statistics

Citations

7 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

73 downloads since deposited on 04 Feb 2014
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Cardiovascular Surgery
Dewey Decimal Classification:610 Medicine & health
Language:German
Date:2013
Deposited On:04 Feb 2014 08:18
Last Modified:13 Aug 2017 11:52
Publisher:Hindawi Publishing Corporation
ISSN:0962-9351
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1155/2013/174168
PubMed ID:24371373

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher