Header

UZH-Logo

Maintenance Infos

A neurocomputational model of the mismatch negativity


Lieder, Falk; Stephan, Klaas E; Daunizeau, Jean; Garrido, Marta I; Friston, Karl J (2013). A neurocomputational model of the mismatch negativity. PLoS Computational Biology, 9(11):e1003288.

Abstract

The mismatch negativity (MMN) is an event related potential evoked by violations of regularity. Here, we present a model of the underlying neuronal dynamics based upon the idea that auditory cortex continuously updates a generative model to predict its sensory inputs. The MMN is then modelled as the superposition of the electric fields evoked by neuronal activity reporting prediction errors. The process by which auditory cortex generates predictions and resolves prediction errors was simulated using generalised (Bayesian) filtering--a biologically plausible scheme for probabilistic inference on the hidden states of hierarchical dynamical models. The resulting scheme generates realistic MMN waveforms, explains the qualitative effects of deviant probability and magnitude on the MMN - in terms of latency and amplitude--and makes quantitative predictions about the interactions between deviant probability and magnitude. This work advances a formal understanding of the MMN and--more generally--illustrates the potential for developing computationally informed dynamic causal models of empirical electromagnetic responses.

Abstract

The mismatch negativity (MMN) is an event related potential evoked by violations of regularity. Here, we present a model of the underlying neuronal dynamics based upon the idea that auditory cortex continuously updates a generative model to predict its sensory inputs. The MMN is then modelled as the superposition of the electric fields evoked by neuronal activity reporting prediction errors. The process by which auditory cortex generates predictions and resolves prediction errors was simulated using generalised (Bayesian) filtering--a biologically plausible scheme for probabilistic inference on the hidden states of hierarchical dynamical models. The resulting scheme generates realistic MMN waveforms, explains the qualitative effects of deviant probability and magnitude on the MMN - in terms of latency and amplitude--and makes quantitative predictions about the interactions between deviant probability and magnitude. This work advances a formal understanding of the MMN and--more generally--illustrates the potential for developing computationally informed dynamic causal models of empirical electromagnetic responses.

Statistics

Citations

22 citations in Web of Science®
29 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 10 Feb 2014
6 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Biomedical Engineering
Dewey Decimal Classification:170 Ethics
610 Medicine & health
Language:English
Date:2013
Deposited On:10 Feb 2014 14:04
Last Modified:11 Aug 2017 03:16
Publisher:Public Library of Science (PLoS)
ISSN:1553-734X
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1371/journal.pcbi.1003288
PubMed ID:24244118

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher
Licence: Creative Commons: Attribution 4.0 International (CC BY 4.0)

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations