Header

UZH-Logo

Maintenance Infos

Precision is essential for efficient catalysis in an evolved Kemp eliminase


Blomberg, Rebecca; Kries, Hajo; Pinkas, Daniel M; Mittl, Peer R E; Grütter, Markus G; Privett, Heidi K; Mayo, Stephen L; Hilvert, Donald (2013). Precision is essential for efficient catalysis in an evolved Kemp eliminase. Nature, 503(7476):418-421.

Abstract

Linus Pauling established the conceptual framework for understanding and mimicking enzymes more than six decades ago. The notion that enzymes selectively stabilize the rate-limiting transition state of the catalysed reaction relative to the bound ground state reduces the problem of design to one of molecular recognition. Nevertheless, past attempts to capitalize on this idea, for example by using transition state analogues to elicit antibodies with catalytic activities, have generally failed to deliver true enzymatic rates. The advent of computational design approaches, combined with directed evolution, has provided an opportunity to revisit this problem. Starting from a computationally designed catalyst for the Kemp elimination--a well-studied model system for proton transfer from carbon--we show that an artificial enzyme can be evolved that accelerates an elementary chemical reaction 6 × 10(8)-fold, approaching the exceptional efficiency of highly optimized natural enzymes such as triosephosphate isomerase. A 1.09 Å resolution crystal structure of the evolved enzyme indicates that familiar catalytic strategies such as shape complementarity and precisely placed catalytic groups can be successfully harnessed to afford such high rate accelerations, making us optimistic about the prospects of designing more sophisticated catalysts.

Abstract

Linus Pauling established the conceptual framework for understanding and mimicking enzymes more than six decades ago. The notion that enzymes selectively stabilize the rate-limiting transition state of the catalysed reaction relative to the bound ground state reduces the problem of design to one of molecular recognition. Nevertheless, past attempts to capitalize on this idea, for example by using transition state analogues to elicit antibodies with catalytic activities, have generally failed to deliver true enzymatic rates. The advent of computational design approaches, combined with directed evolution, has provided an opportunity to revisit this problem. Starting from a computationally designed catalyst for the Kemp elimination--a well-studied model system for proton transfer from carbon--we show that an artificial enzyme can be evolved that accelerates an elementary chemical reaction 6 × 10(8)-fold, approaching the exceptional efficiency of highly optimized natural enzymes such as triosephosphate isomerase. A 1.09 Å resolution crystal structure of the evolved enzyme indicates that familiar catalytic strategies such as shape complementarity and precisely placed catalytic groups can be successfully harnessed to afford such high rate accelerations, making us optimistic about the prospects of designing more sophisticated catalysts.

Statistics

Citations

97 citations in Web of Science®
101 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 10 Feb 2014
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2013
Deposited On:10 Feb 2014 15:28
Last Modified:08 Dec 2017 02:57
Publisher:Nature Publishing Group
ISSN:0028-0836
Publisher DOI:https://doi.org/10.1038/nature12623
PubMed ID:24132235

Download

Filetype: Other (Coversheet Pages conversion from application/pdf to application/pdf) - Registered users only