Header

UZH-Logo

Maintenance Infos

Orthogonal assembly of a designed ankyrin repeat protein-cytotoxin conjugate with a clickable serum albumin module for half-life extension


Simon, Manuel; Frey, Raphael; Zangemeister-Wittke, Uwe; Plückthun, Andreas (2013). Orthogonal assembly of a designed ankyrin repeat protein-cytotoxin conjugate with a clickable serum albumin module for half-life extension. Bioconjugate Chemistry, 24(11):1955-1966.

Abstract

The generation of drug conjugates for safe and effective tumor targeting requires binding proteins tolerant to functionalization by rational engineering. Here, we show that Designed Ankyrin Repeat Proteins (DARPins), a novel class of binding proteins not derived from antibodies, can be used as building blocks for facile orthogonal assembly of bioconjugates for tumor targeting with tailored properties. DARPin Ec1, which targets the Epithelial Cell Adhesion Molecule (EpCAM), was genetically modified with a C-terminal cysteine for conjugation of the small molecule cytotoxin monomethylauristatin F (MMAF). In addition, it was N-terminally functionalized by metabolic introduction of the non-natural amino acid azidohomoalanine to enable linkage of site-specifically dibenzocyclooctyne-modified mouse serum albumin (MSA) for half-life extension using Cu(I)-free click chemistry. The conjugate MSA-Ec1-MMAF was assembled to obtain high yields of a pure and stable drug conjugate as confirmed by various analytical methods and in functional assays. The orthogonality of the assembly led to a defined reaction product and preserved the functional properties of all modules, including EpCAM-specific binding and internalization, FcRn binding mediated by MSA, and cytotoxic potency. Linkage of MMAF to the DARPin increased receptor-specific uptake of the drug while decreasing nonspecific uptake, and further coupling of the conjugate to MSA enhanced this effect. In mice, albumin conjugation increased the serum half-life from 11 min to 17.4 h, resulting in a more than 22-fold increase in the area-under-the-curve (AUC). Our data demonstrate the promise of the DARPin format for facile modular assembly of drug conjugates with improved pharmacokinetic performance for tumor targeting.

Abstract

The generation of drug conjugates for safe and effective tumor targeting requires binding proteins tolerant to functionalization by rational engineering. Here, we show that Designed Ankyrin Repeat Proteins (DARPins), a novel class of binding proteins not derived from antibodies, can be used as building blocks for facile orthogonal assembly of bioconjugates for tumor targeting with tailored properties. DARPin Ec1, which targets the Epithelial Cell Adhesion Molecule (EpCAM), was genetically modified with a C-terminal cysteine for conjugation of the small molecule cytotoxin monomethylauristatin F (MMAF). In addition, it was N-terminally functionalized by metabolic introduction of the non-natural amino acid azidohomoalanine to enable linkage of site-specifically dibenzocyclooctyne-modified mouse serum albumin (MSA) for half-life extension using Cu(I)-free click chemistry. The conjugate MSA-Ec1-MMAF was assembled to obtain high yields of a pure and stable drug conjugate as confirmed by various analytical methods and in functional assays. The orthogonality of the assembly led to a defined reaction product and preserved the functional properties of all modules, including EpCAM-specific binding and internalization, FcRn binding mediated by MSA, and cytotoxic potency. Linkage of MMAF to the DARPin increased receptor-specific uptake of the drug while decreasing nonspecific uptake, and further coupling of the conjugate to MSA enhanced this effect. In mice, albumin conjugation increased the serum half-life from 11 min to 17.4 h, resulting in a more than 22-fold increase in the area-under-the-curve (AUC). Our data demonstrate the promise of the DARPin format for facile modular assembly of drug conjugates with improved pharmacokinetic performance for tumor targeting.

Statistics

Citations

20 citations in Web of Science®
23 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 23 Jan 2014
0 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Department of Biochemistry
07 Faculty of Science > Department of Biochemistry
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2013
Deposited On:23 Jan 2014 12:36
Last Modified:08 Dec 2017 02:57
Publisher:American Chemical Society
ISSN:1043-1802
Publisher DOI:https://doi.org/10.1021/bc4004102
PubMed ID:24168270

Download