Header

UZH-Logo

Maintenance Infos

Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for the identification of ceratopogonid and culicid larvae


Steinmann, I C; Pflüger, V; Schaffner, F; Mathis, A; Kaufmann, C (2013). Evaluation of matrix-assisted laser desorption/ionization time of flight mass spectrometry for the identification of ceratopogonid and culicid larvae. Parasitology, 140(3):318-327.

Abstract

Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) was evaluated for the rapid identification of ceratopogonid larvae. Optimal sample preparation as evaluated with laboratory-reared biting midges Culicoides nubeculosus was the homogenization of gut-less larvae in 10% formic acid, and analysis of 0.2 mg/ml crude protein homogenate mixed with SA matrix at a ratio of 1:1.5. Using 5 larvae each of 4 ceratopogonid species (C. nubeculosus, C. obsoletus, C. decor, and Dasyhelea sp.) and of 2 culicid species (Aedes aegypti, Ae. japonicus), biomarker mass sets between 27 and 33 masses were determined. In a validation study, 67 larvae belonging to the target species were correctly identified by automated database-based identification (91%) or manual full comparison (9%). Four specimens of non-target species did not yield identification. As anticipated for holometabolous insects, the biomarker mass sets of adults cannot be used for the identification of larvae, and vice versa, because they share only very few similar masses as shown for C. nubeculosus, C. obsoletus, and Ae. japonicus. Thus, protein profiling by MALDI-TOF as a quick, inexpensive and accurate alternative tool is applicable to identify insect larvae of vector species collected in the field.

Abstract

Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) was evaluated for the rapid identification of ceratopogonid larvae. Optimal sample preparation as evaluated with laboratory-reared biting midges Culicoides nubeculosus was the homogenization of gut-less larvae in 10% formic acid, and analysis of 0.2 mg/ml crude protein homogenate mixed with SA matrix at a ratio of 1:1.5. Using 5 larvae each of 4 ceratopogonid species (C. nubeculosus, C. obsoletus, C. decor, and Dasyhelea sp.) and of 2 culicid species (Aedes aegypti, Ae. japonicus), biomarker mass sets between 27 and 33 masses were determined. In a validation study, 67 larvae belonging to the target species were correctly identified by automated database-based identification (91%) or manual full comparison (9%). Four specimens of non-target species did not yield identification. As anticipated for holometabolous insects, the biomarker mass sets of adults cannot be used for the identification of larvae, and vice versa, because they share only very few similar masses as shown for C. nubeculosus, C. obsoletus, and Ae. japonicus. Thus, protein profiling by MALDI-TOF as a quick, inexpensive and accurate alternative tool is applicable to identify insect larvae of vector species collected in the field.

Statistics

Citations

11 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

50 downloads since deposited on 10 Feb 2014
20 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:05 Vetsuisse Faculty > Institute of Parasitology
04 Faculty of Medicine > Institute of Parasitology
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
600 Technology
Language:English
Date:2013
Deposited On:10 Feb 2014 13:47
Last Modified:10 Nov 2016 14:13
Publisher:Cambridge University Press
ISSN:0031-1820
Additional Information:see also http://www.zora.uzh.ch/73141/
Publisher DOI:https://doi.org/10.1017/S0031182012001618
PubMed ID:23171762

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 412kB
View at publisher