Erratum: density profiles of CDM microhalos and their implications for annihilation boost factors

Anderhalden, Donnino; Diemand, Juerg

DOI: https://doi.org/10.1088/1475-7516/2013/08/E02

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-90648
Published Version

Originally published at:
DOI: https://doi.org/10.1088/1475-7516/2013/08/E02
Erratum: density profiles of CDM microhalos and their implications for annihilation boost factors

This content has been downloaded from IOPscience. Please scroll down to see the full text.

JCAP08(2013)E02
(http://iopscience.iop.org/1475-7516/2013/08/E02)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 178.192.175.12
This content was downloaded on 25/01/2014 at 08:29

Please note that terms and conditions apply.
Erratum: density profiles of CDM microhalos and their implications for annihilation boost factors

Donnino Anderhalden and Juerg Diemand

Institute for Theoretical Physics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
E-mail: donninoa@physik.uzh.ch, diemand@physik.uzh.ch

Received July 25, 2013
Accepted July 25, 2013
Published August 19, 2013

Erratum to: JCAP04(2013)009

Keywords: cosmological simulations, dark matter simulations

The paper “Density profiles of CDM microhalos and their implications for annihilation boost factors” was published in JCAP, Issue 04, 009 (2013) [1]. The simulation parameters of Halos 1–3 in the realisation with cutoff in the initial matter power spectrum are erroneous (see table 1 in [1]). The corrected values for M_{200} and r_{200} (and therefore as a consequence also c_{200} and c_{NFW}) are listed in table 1. Furthermore, the changes in c_{200} also cause changes in the $z = 0$ concentration estimates, given in section 3.2. They now read: $c_{200} = 74.6, 83.8$ and 56.6. We want to stress that all our physical conclusions remain unaltered.

Finally, we would like to report a typo in the axes labeling in figure 2 in [1]. The spherically averaged density profiles are plotted at $z = 31$, not at $z = 0$ as indicated in the figure. An updated version is shown in figure 2.

Acknowledgments

We thank Adrienne Erickcek who helped us finding these mistakes.

References

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
 & M_{200} & r_{200} & r_s & $c_{200} = r_{200}/r_s$ & c_{NFW} & α \\
\hline
Cutoff & & & & & & \\
Halo 1 & 0.79 & 4.26 & 1.84 & 2.33 & 3.89 & 1.4 \\
Halo 2 & 2.08 & 5.89 & 2.25 & 2.62 & 3.72 & 1.3 \\
Halo 3 & 2.18 & 5.99 & 3.38 & 1.77 & 2.96 & 1.4 \\
\hline
No Cutoff & & & & & & \\
Halo 1 & 1.94 & 5.78 & 1.94 & 2.97 & 2.97 & 1 \\
Halo 2 & 2.93 & 6.63 & 2.22 & 2.98 & 2.98 & 1 \\
Halo 3 & 3.81 & 7.22 & 3.47 & 2.09 & 2.09 & 1 \\
\hline
\end{tabular}
\caption{Halo parameters of the Level 1 simulation at redshift $z = 31$. M_{200} and r_{200} are measured as 200 times the critical density, α is the inner density slope of the measured density profile (see eq. (3.1) in [1]), $\alpha = 1$ corresponds to the NFW profile. Distances are given in physical units.}
\end{table}
Figure 2. Panels 1–3: spherically averaged density profiles of the three largest collapsed microhalos at \(z = 31 \), with (red triangles) and without (black squares) cutoff. The red solid lines refer to the best fit according to eq. (3.1) in [1] with \(\alpha = 1.4 \) (Halo 1 & Halo 3) and \(\alpha = 1.3 \) (Halo 2), the black solid lines refer to a NFW fit respectively. The radial distance is plotted in physical units, densities in units of \(\rho_{\text{crit}} \) at \(z = 31 \). Panel 4: density residuals between the Level 1 run and three convergence test simulations, each varying one simulation parameter.