Header

UZH-Logo

Maintenance Infos

Angular momentum acquisition in galaxy halos


Stewart, Kyle R; Brooks, Alyson M; Bullock, James S; Maller, Ariyeh H; Diemand, Jürg; Wadsley, James; Moustakas, Leonidas A (2013). Angular momentum acquisition in galaxy halos. Astrophysical Journal, 769(1):74.

Abstract

We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ~70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by λ ~ 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms "cold flow disks." We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

Abstract

We use high-resolution cosmological hydrodynamic simulations to study the angular momentum acquisition of gaseous halos around Milky-Way-sized galaxies. We find that cold mode accreted gas enters a galaxy halo with ~70% more specific angular momentum than dark matter averaged over cosmic time (though with a very large dispersion). In fact, we find that all matter has a higher spin parameter when measured at accretion than when averaged over the entire halo lifetime, and is well characterized by λ ~ 0.1, at accretion. Combined with the fact that cold flow gas spends a relatively short time (1-2 dynamical times) in the halo before sinking to the center, this naturally explains why cold flow halo gas has a specific angular momentum much higher than that of the halo and often forms "cold flow disks." We demonstrate that the higher angular momentum of cold flow gas is related to the fact that it tends to be accreted along filaments.

Statistics

Citations

57 citations in Web of Science®
52 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

37 downloads since deposited on 10 Feb 2014
5 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:May 2013
Deposited On:10 Feb 2014 17:04
Last Modified:05 Apr 2016 17:31
Publisher:IOP Publishing
ISSN:0004-637X
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1088/0004-637X/769/1/74

Download

Download PDF  'Angular momentum acquisition in galaxy halos'.
Preview
Filetype: PDF
Size: 1MB
View at publisher