Header

UZH-Logo

Maintenance Infos

Can we measure the slopes of density profiles in dwarf spheroidal galaxies?


Kowalczyk, K; Lokas, E L; Kazantzidis, S; Mayer, L (2013). Can we measure the slopes of density profiles in dwarf spheroidal galaxies? Monthly Notices of the Royal Astronomical Society, 431(3):2796-2807.

Abstract

Using collisionless N-body simulations of dwarf galaxies orbiting the Milky Way, we construct realistic models of dwarf spheroidal (dSph) galaxies of the Local Group. The dwarfs are initially composed of stellar discs embedded in dark matter haloes with different inner density slopes and are placed on an eccentric orbit typical for Milky Way subhaloes. After a few Gyr of evolution, the stellar component is triaxial as a result of bar instability induced by tidal forces. Observing the simulated dwarfs along the three principal axes of the stellar component, we create mock data sets and determine the corresponding half-light radii and line-of-sight velocity dispersions. Using the estimator proposed by Wolf et al., we calculate the masses within half-light radii. The masses obtained in this way are over(under)estimated by up to a factor of 2 when the line of sight is along the longest (shortest) axis of the stellar component. We then divide the initial stellar distribution into an inner and outer population and trace their evolution in time. The two populations, although strongly affected by tidal forces, retain different density profiles even after a few Gyr of evolution. We measure the half-light radii and velocity dispersions of the stars in the two populations along different lines of sight and use them to estimate the slope of the mass distribution in the dwarf galaxies following the method recently proposed by Walker & Peñarrubia. The inferred slopes are systematically over- or underestimated, depending on the line of sight. In particular, when the dwarf is seen along the longest axis of the stellar component, a significantly shallower density profile is inferred than the real one measured from the simulations. Given that most dSph galaxies in the Local Group are non-spherical in appearance and their orientation with respect to our line of sight is unknown, but most probably random, the method can be reliably applied only to a large sample of dwarfs when these systematic errors are expected to be diminished.

Abstract

Using collisionless N-body simulations of dwarf galaxies orbiting the Milky Way, we construct realistic models of dwarf spheroidal (dSph) galaxies of the Local Group. The dwarfs are initially composed of stellar discs embedded in dark matter haloes with different inner density slopes and are placed on an eccentric orbit typical for Milky Way subhaloes. After a few Gyr of evolution, the stellar component is triaxial as a result of bar instability induced by tidal forces. Observing the simulated dwarfs along the three principal axes of the stellar component, we create mock data sets and determine the corresponding half-light radii and line-of-sight velocity dispersions. Using the estimator proposed by Wolf et al., we calculate the masses within half-light radii. The masses obtained in this way are over(under)estimated by up to a factor of 2 when the line of sight is along the longest (shortest) axis of the stellar component. We then divide the initial stellar distribution into an inner and outer population and trace their evolution in time. The two populations, although strongly affected by tidal forces, retain different density profiles even after a few Gyr of evolution. We measure the half-light radii and velocity dispersions of the stars in the two populations along different lines of sight and use them to estimate the slope of the mass distribution in the dwarf galaxies following the method recently proposed by Walker & Peñarrubia. The inferred slopes are systematically over- or underestimated, depending on the line of sight. In particular, when the dwarf is seen along the longest axis of the stellar component, a significantly shallower density profile is inferred than the real one measured from the simulations. Given that most dSph galaxies in the Local Group are non-spherical in appearance and their orientation with respect to our line of sight is unknown, but most probably random, the method can be reliably applied only to a large sample of dwarfs when these systematic errors are expected to be diminished.

Statistics

Citations

11 citations in Web of Science®
11 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

76 downloads since deposited on 11 Feb 2014
18 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:2013
Deposited On:11 Feb 2014 10:09
Last Modified:05 Apr 2016 17:31
Publisher:Oxford University Press
ISSN:0035-8711
Additional Information:This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2013 The Royal Astronomical Society. Published by Oxford University Press on behalf of The Royal Astronomical Society. All rights reserved.
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1093/mnras/stt376

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations