Header

UZH-Logo

Maintenance Infos

Atmospheric retrieval analysis of the directly imaged exoplanet HR 8799b


Lee, Jae-Min; Heng, Kevin; Irwin, Patrick G J (2013). Atmospheric retrieval analysis of the directly imaged exoplanet HR 8799b. Astrophysical Journal, 778(2):97.

Abstract

Directly imaged exoplanets are unexplored laboratories for the application of the spectral and temperature retrieval method, where the chemistry and composition of their atmospheres are inferred from inverse modeling of the available data. As a pilot study, we focus on the extrasolar gas giant HR 8799b, for which more than 50 data points are available. We upgrade our non-linear optimal estimation retrieval method to include a phenomenological model of clouds that requires the cloud optical depth and monodisperse particle size to be specified. Previous studies have focused on forward models with assumed values of the exoplanetary properties; there is no consensus on the best-fit values of the radius, mass, surface gravity, and effective temperature of HR 8799b. We show that cloud-free models produce reasonable fits to the data if the atmosphere is of super-solar metallicity and non-solar elemental abundances. Intermediate cloudy models with moderate values of the cloud optical depth and micron-sized particles provide an equally reasonable fit to the data and require a lower mean molecular weight. We report our best-fit values for the radius, mass, surface gravity, and effective temperature of HR 8799b. The mean molecular weight is about 3.8, while the carbon-to-oxygen ratio is about unity due to the prevalence of carbon monoxide. Our study emphasizes the need for robust claims about the nature of an exoplanetary atmosphere to be based on analyses involving both photometry and spectroscopy and inferred from beyond a few photometric data points, such as are typically reported for hot Jupiters.

Abstract

Directly imaged exoplanets are unexplored laboratories for the application of the spectral and temperature retrieval method, where the chemistry and composition of their atmospheres are inferred from inverse modeling of the available data. As a pilot study, we focus on the extrasolar gas giant HR 8799b, for which more than 50 data points are available. We upgrade our non-linear optimal estimation retrieval method to include a phenomenological model of clouds that requires the cloud optical depth and monodisperse particle size to be specified. Previous studies have focused on forward models with assumed values of the exoplanetary properties; there is no consensus on the best-fit values of the radius, mass, surface gravity, and effective temperature of HR 8799b. We show that cloud-free models produce reasonable fits to the data if the atmosphere is of super-solar metallicity and non-solar elemental abundances. Intermediate cloudy models with moderate values of the cloud optical depth and micron-sized particles provide an equally reasonable fit to the data and require a lower mean molecular weight. We report our best-fit values for the radius, mass, surface gravity, and effective temperature of HR 8799b. The mean molecular weight is about 3.8, while the carbon-to-oxygen ratio is about unity due to the prevalence of carbon monoxide. Our study emphasizes the need for robust claims about the nature of an exoplanetary atmosphere to be based on analyses involving both photometry and spectroscopy and inferred from beyond a few photometric data points, such as are typically reported for hot Jupiters.

Statistics

Citations

37 citations in Web of Science®
32 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

44 downloads since deposited on 11 Feb 2014
10 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute for Computational Science
Dewey Decimal Classification:530 Physics
Language:English
Date:December 2013
Deposited On:11 Feb 2014 12:19
Last Modified:08 Dec 2017 03:12
Publisher:IOP Publishing
ISSN:0004-637X
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1088/0004-637X/778/2/97

Download

Download PDF  'Atmospheric retrieval analysis of the directly imaged exoplanet HR 8799b'.
Preview
Content: Accepted Version
Filetype: PDF
Size: 1MB
View at publisher