Header

UZH-Logo

Maintenance Infos

The role of prolactin in fish reproduction


Whittington, Camilla M; Wilson, Anthony B (2013). The role of prolactin in fish reproduction. General and Comparative Endocrinology, 191:123-136.

Abstract

Prolactin (PRL) has one of the broadest ranges of functions of any vertebrate hormone, and plays a critical role in regulating aspects of reproduction in widely divergent lineages. However, while PRL structure, mode of action and functions have been well-characterised in mammals, studies of other vertebrate lineages remain incomplete. As the most diverse group of vertebrates, fish offer a particularly valuable model system for the study of the evolution of reproductive endocrine function. Here, we review the current state of knowledge on the role of prolactin in fish reproduction, which extends to migration, reproductive development and cycling, brood care behaviour, pregnancy, and nutrient provisioning to young.
We also highlight significant gaps in knowledge and advocate a specific bidirectional research methodology including both observational and manipulative experiments. Focusing research efforts towards the thorough characterisation of a restricted number of reproductively diverse fish models will help to provide the foundation necessary for a more explicitly evolutionary analysis of PRL function.

Abstract

Prolactin (PRL) has one of the broadest ranges of functions of any vertebrate hormone, and plays a critical role in regulating aspects of reproduction in widely divergent lineages. However, while PRL structure, mode of action and functions have been well-characterised in mammals, studies of other vertebrate lineages remain incomplete. As the most diverse group of vertebrates, fish offer a particularly valuable model system for the study of the evolution of reproductive endocrine function. Here, we review the current state of knowledge on the role of prolactin in fish reproduction, which extends to migration, reproductive development and cycling, brood care behaviour, pregnancy, and nutrient provisioning to young.
We also highlight significant gaps in knowledge and advocate a specific bidirectional research methodology including both observational and manipulative experiments. Focusing research efforts towards the thorough characterisation of a restricted number of reproductively diverse fish models will help to provide the foundation necessary for a more explicitly evolutionary analysis of PRL function.

Statistics

Citations

17 citations in Web of Science®
17 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

117 downloads since deposited on 11 Feb 2014
55 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, further contribution
Communities & Collections:07 Faculty of Science > Institute of Evolutionary Biology and Environmental Studies
Dewey Decimal Classification:570 Life sciences; biology
590 Animals (Zoology)
Language:English
Date:2013
Deposited On:11 Feb 2014 13:31
Last Modified:05 Apr 2016 17:32
Publisher:Elsevier
ISSN:0016-6480
Publisher DOI:https://doi.org/10.1016/j.ygcen.2013.05.027
PubMed ID:23791758

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher
Preview Icon on Download
Preview
Content: Accepted Version
Filetype: PDF
Size: 724kB