Header

UZH-Logo

Maintenance Infos

Somatotopic astrocytic activity in the somatosensory cortex


Ghosh, Arko; Wyss, Matthias T; Weber, Bruno (2013). Somatotopic astrocytic activity in the somatosensory cortex. Glia, 61(4):601-610.

Abstract

Astrocytes play a crucial role in maintaining neuronal function and monitoring their activity. According to neuronal activity maps, the body is represented topographically in the somatosensory cortex. In rats, neighboring cortical areas receive forelimb (FL) and hindlimb (HL) sensory inputs. Whether astrocytic activity is also restricted to the cortical area receiving the respective peripheral sensory inputs is not known. Using wide field optical imaging we measured changes in the concentration of astrocytic calcium within the FL and HL sensorimotor cortex in response to peripheral sensory inputs. Mapping the calcium signals upon electrical stimulation of the forepaw and hindpaw we found activity largely restricted to the FL and HL area, respectively. In comparison to neuronal activity the time course of the astrocytic calcium activity was considerably slower. The signal took 6 s to peak after the onset of a 2 Hz and 2 s long electrical stimulation of the hindpaw and 8 s for a 4 s stimulation. The astrocytic signals were delayed relative to cerebral blood flow measured using laser speckle imaging. The intensity of both the astrocytic and neuronal signals in the HL sensorimotor cortex declined with increase in stimulation frequency. Moreover, blocking neuronal input by tetrodotoxin abolished astrocytic calcium signals. We suggest that the topographical representation of the body is not only true for cortical neurons but also for astrocytes. The maps and the frequency-dependent activations reflect strong reciprocal neuroglial communication and provide a new experimental approach to explore the role of astrocytes in health and disease.

Abstract

Astrocytes play a crucial role in maintaining neuronal function and monitoring their activity. According to neuronal activity maps, the body is represented topographically in the somatosensory cortex. In rats, neighboring cortical areas receive forelimb (FL) and hindlimb (HL) sensory inputs. Whether astrocytic activity is also restricted to the cortical area receiving the respective peripheral sensory inputs is not known. Using wide field optical imaging we measured changes in the concentration of astrocytic calcium within the FL and HL sensorimotor cortex in response to peripheral sensory inputs. Mapping the calcium signals upon electrical stimulation of the forepaw and hindpaw we found activity largely restricted to the FL and HL area, respectively. In comparison to neuronal activity the time course of the astrocytic calcium activity was considerably slower. The signal took 6 s to peak after the onset of a 2 Hz and 2 s long electrical stimulation of the hindpaw and 8 s for a 4 s stimulation. The astrocytic signals were delayed relative to cerebral blood flow measured using laser speckle imaging. The intensity of both the astrocytic and neuronal signals in the HL sensorimotor cortex declined with increase in stimulation frequency. Moreover, blocking neuronal input by tetrodotoxin abolished astrocytic calcium signals. We suggest that the topographical representation of the body is not only true for cortical neurons but also for astrocytes. The maps and the frequency-dependent activations reflect strong reciprocal neuroglial communication and provide a new experimental approach to explore the role of astrocytes in health and disease.

Statistics

Citations

8 citations in Web of Science®
8 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 13 Feb 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > Institute of Pharmacology and Toxicology
07 Faculty of Science > Institute of Pharmacology and Toxicology

07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
610 Medicine & health
Language:English
Date:2013
Deposited On:13 Feb 2014 13:53
Last Modified:05 Apr 2016 17:34
Publisher:Wiley-Blackwell
ISSN:0894-1491
Publisher DOI:https://doi.org/10.1002/glia.22458
PubMed ID:23339077

Download

Preview Icon on Download
Content: Accepted Version
Filetype: PDF - Registered users only
Size: 946kB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations