A car-borne SAR and InSAR experiment

Frey, Othmar; Werner, Charles L; Wegmüller, Urs; Wiesmann, Andreas; Henke, Daniel; Magnard, Christophe

Abstract: In this contribution, a car-borne SAR and InSAR experiment is described. The slope of a valley was imaged by means of a single-pass InSAR system mounted on a car driving on roads along the bottom of the valley. The GAMMA portable radar interferometer GPRI-II hardware with a modified antenna configuration was used for data acquisition. The experimental setup (1), SAR imagery focused along a slightly curved sensor trajectory (2), and first interferometric results (3) obtained using this configuration are presented.

DOI: https://doi.org/10.1109/IGARSS.2013.6721100

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-92065
Published Version

Originally published at:
DOI: https://doi.org/10.1109/IGARSS.2013.6721100
A CAR-BORNE SAR AND INSAR EXPERIMENT

Othmar Frey
Gamma Remote Sensing / Earth Observation & Remote Sensing, ETH Zurich Switzerland
Email: frey@gamma-rs.ch

Charles L. Werner
Urs Wegmüller
Andreas Wiesmann
Gamma Remote Sensing Switzerland

Daniel Henke
Christophe Magnard
Remote Sensing Laboratories University of Zurich Switzerland

Abstract—In this contribution, a car-borne SAR and InSAR experiment is described. The slope of a valley was imaged by means of a single-pass InSAR system mounted on a car driving on roads along the bottom of the valley. The GAMMA portable radar interferometer GPRI-II hardware with a modified antenna configuration was used for data acquisition. The experimental setup (1), SAR imagery focused along a slightly curved sensor trajectory (2), and first interferometric results (3) obtained using this configuration are presented.

Index Terms—Synthetic aperture radar (SAR), ground-based SAR system, SAR imaging, SAR interferometry, car-borne SAR, CARSAR

I. INTRODUCTION

Synthetic aperture radar interferometric techniques have been widely used to produce digital elevation models (DEMs) on a regional to global scale and to measure displacements in repeat-pass mode. Apart from spaceborne and airborne radars, also ground-based radar systems have appeared [1]–[4]. Ground-based radars add complementary advantages, such as timely in-situ measurements taken from a suitable viewpoint and repeatability of measurements in both time and space. They are therefore suitable to measure ground motion, to monitor land-slides, as well as to measure the topography of the illuminated area. In 2007, Gamma Remote Sensing developed a portable terrestrial real-aperture radar interferometer operating in the Ku-band at 17.2 GHz [1], [5]. The one-transmit-dual-receive configuration allows for a simultaneous acquisition of two SAR data sets in a single pass. Therefore, an interferometric evaluation of the illuminated scene is possible including rapidly decorrelating targets such as a forest. In addition, the atmospheric phase contributions cancel out and there is potentially no need to separate motion from topography for repeat-pass measurements. For the experiment described here the GPRI-II radar was employed in a modified configuration to enable a synthetic aperture radar acquisition mode from an agile platform.

II. EXPERIMENTAL SETUP

In Fig. 1(a) the GPRI-II real-aperture terrestrial radar in its standard configuration is shown [2]. For the synthetic aperture radar experiment described here the following modifications were applied to the standard GPRI-II hardware:

1) The long real-aperture antennas were replaced by horn antennas to get a wider beamwidth which is suited for the synthetic aperture radar mode.
2) A different antenna rack was used such that the antennas can be mounted on the roof-top of a car.
3) Accurate positioning and basic attitude information was acquired by means of carrier-phase-based differential GPS measurements at an update rate of 20 Hz.

Interferometric SAR data was acquired along two different roads (curved/straight) at different nearly constant velocities. The example data set presented in this contribution was taken from a slightly curved road at an average speed of 21 m/s. An overview of the system
Fig. 1. (a) GPRI-II standard configuration (terrestrial real-aperture radar). (b) Modified antenna configuration and antenna rack including GPS antennas for accurate positioning as used in the CARSAR experiment.

TABLE I

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier frequency</td>
<td>17.2 GHz</td>
</tr>
<tr>
<td>Chirp bandwidth</td>
<td>200 MHz</td>
</tr>
<tr>
<td>Type</td>
<td>FMCW</td>
</tr>
<tr>
<td>Chirp length</td>
<td>0.001 s</td>
</tr>
<tr>
<td>Range 3dB beamwidth</td>
<td>18 deg</td>
</tr>
<tr>
<td>Azimuth 3dB beamwidth</td>
<td>16.9 deg</td>
</tr>
<tr>
<td>Ground speed</td>
<td>21 m/s</td>
</tr>
<tr>
<td>Interferometric baseline</td>
<td>0.25 m</td>
</tr>
<tr>
<td>Off-nadir angle</td>
<td>110 deg</td>
</tr>
</tbody>
</table>

parameters for this configuration is given in Table I. Fig. 1(b) shows the modified radar system along with the GPS antennas as mounted on the roof-top of a car during their the synthetic aperture radar experiment.

III. PROCESSING METHODS

The linear FMCW-type GPRI-II radar works in dechirp-on-receive mode, thus the received signal $s(t)$ is mixed with the reference signal. This transforms the data to a deramped signal s_d of the form [6]:

$$s_d(t) = s^*(t) \exp(j2\pi f_s t + j\pi \gamma t^2),$$

(1)

where f_s is the start frequency of the chirp and γ is the chirp rate. The phase of the resulting deramped signal is

$$\varphi_d(t) = (2\pi f_s t_n - \pi \gamma t_n^2) + 2\pi \gamma t_n t, \quad (2)$$

which can be directly related to range distance via a range-Fourier transform. t_n is the two-way time delay to a target n. In contrast to the matched-filter-based range imaging, a range-dependent quadratic phase error (within brackets), known as the residual video phase, remains after this range-compression operation [7]. While for static operation mode—which is the original purpose of the GPRI-II radar—this residual video phase can be neglected it has to be compensated if substantial range-cell migration occurs in the synthetic aperture operation mode.

SAR focusing along the slightly curved sensor trajectory following a main road was performed using a
time-domain back-projection processing approach [8]. Accurate positioning information was obtained by post-processing of carrier-phase-based short-baseline differential GPS data relative to a GPS ad-hoc reference station that was set up on the test site. Due to the long chirp duration of 1 millisecond the start-stop approximation is not valid and therefore the time varying position of the sensor has to be taken into account during back-
projection processing. A detailed treatment of this aspect is found in [9]).

IV. RESULTS

In Fig. 2(a) a focused SAR image taken from the interferometric radar mounted on the roof-top of a car driving along a slightly curved highway is shown. Fig. 2(b) shows a photograph of the valley slope imaged by the car-borne SAR system. Figures 2(c) and 2(d) depict the single-pass interferogram and the coherence magnitude, respectively.

V. CONCLUSION

A CARSAR experiment using a modified configuration of the Ku-band FMCW GPRI-II terrestrial radar mounted on the roof-top of a car was described. First results of the campaign were presented including focused SAR imagery as well as single-pass interferometry from a slightly curved sensor along a highway demonstrating SAR imaging and single-pass SAR interferometry from an agile car-borne radar system. The SAR and InSAR data taken acquired within this experiment, which includes single-pass and repeat-pass data takes, are being used as a testbed for development and testing of SAR focusing and motion-compensation algorithms and also to evaluate interferometric SAR applications.

REFERENCES

