Header

UZH-Logo

Maintenance Infos

Integrating multiple lines of evidence to better understand the evolutionary divergence of humpback dolphins along their entire distribution range: a new dolphin species in Australian waters?


Mendez, Martin; Jefferson, Thomas A; Kolokotronis, Sergios-Orestis; Krützen, Michael; Parra, Guido J; Collins, Tim; Minton, Giana; Baldwin, Robert; Berggren, Per; Särnblad, Anna; Amir, Omar A; Peddemors, Vic M; Karczmarski, Leszek; Guissamulo, Almeida; Smith, Brian; Sutaria, Dipani; Amato, George; Rosenbaum, Howard C (2013). Integrating multiple lines of evidence to better understand the evolutionary divergence of humpback dolphins along their entire distribution range: a new dolphin species in Australian waters? Molecular Ecology, 22(23):5936-5948.

Abstract

The conservation of humpback dolphins, distributed in coastal waters of the Indo-West Pacific and eastern Atlantic Oceans, has been hindered by a lack of understanding about the number of species in the genus (Sousa) and their population structure. To address this issue, we present a combined analysis of genetic and morphologic data collected from beach-cast, remote-biopsied and museum specimens from throughout the known Sousa range. We extracted genetic sequence data from 235 samples from extant populations and explored the mitochondrial control region and four nuclear introns through phylogenetic, population-level and population aggregation frameworks. In addition, 180 cranial specimens from the same geographical regions allowed comparisons of 24 morphological characters through multivariate analyses. The genetic and morphological data showed significant and concordant patterns of geographical segregation, which are typical for the kind of demographic isolation displayed by species units, across the Sousa genus distribution range. Based on our combined genetic and morphological analyses, there is convincing evidence for at least four species within the genus (S. teuszii in the Atlantic off West Africa, S. plumbea in the central and western Indian Ocean, S. chinensis in the eastern Indian and West Pacific Oceans, and a new as-yet-unnamed species off northern Australia).

Abstract

The conservation of humpback dolphins, distributed in coastal waters of the Indo-West Pacific and eastern Atlantic Oceans, has been hindered by a lack of understanding about the number of species in the genus (Sousa) and their population structure. To address this issue, we present a combined analysis of genetic and morphologic data collected from beach-cast, remote-biopsied and museum specimens from throughout the known Sousa range. We extracted genetic sequence data from 235 samples from extant populations and explored the mitochondrial control region and four nuclear introns through phylogenetic, population-level and population aggregation frameworks. In addition, 180 cranial specimens from the same geographical regions allowed comparisons of 24 morphological characters through multivariate analyses. The genetic and morphological data showed significant and concordant patterns of geographical segregation, which are typical for the kind of demographic isolation displayed by species units, across the Sousa genus distribution range. Based on our combined genetic and morphological analyses, there is convincing evidence for at least four species within the genus (S. teuszii in the Atlantic off West Africa, S. plumbea in the central and western Indian Ocean, S. chinensis in the eastern Indian and West Pacific Oceans, and a new as-yet-unnamed species off northern Australia).

Statistics

Citations

37 citations in Web of Science®
36 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

1 download since deposited on 10 Feb 2014
0 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Department of Anthropology
Dewey Decimal Classification:300 Social sciences, sociology & anthropology
Language:English
Date:2013
Deposited On:10 Feb 2014 13:28
Last Modified:05 Apr 2016 17:37
Publisher:Wiley-Blackwell
ISSN:0962-1083
Publisher DOI:https://doi.org/10.1111/mec.12535
PubMed ID:24268046

Download

Preview Icon on Download
Content: Published Version
Filetype: PDF - Registered users only
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations