Header

UZH-Logo

Maintenance Infos

Jet and underlying event properties as a function of charged-particle multiplicity in proton–proton collisions at s√=7 TeV


CMS Collaboration; Chatrchyan, S; Khachatryan, V; Sirunyan, A M; et al; Chiochia, V; Kilminster, B; Robmann, P (2013). Jet and underlying event properties as a function of charged-particle multiplicity in proton–proton collisions at s√=7 TeV. European Physical Journal C - Particles and Fields, 73:2674.

Abstract

Characteristics of multi-particle production in proton-proton collisions at s√=7 TeV are studied as a function of the charged-particle multiplicity, N ch. The produced particles are separated into two classes: those belonging to jets and those belonging to the underlying event. Charged particles are measured with pseudorapidity |η|<2.4 and transverse momentum p T>0.25 GeV/c. Jets are reconstructed from charged-particles only and required to have p T>5 GeV/c. The distributions of jet p T, average p T of charged particles belonging to the underlying event or to jets, jet rates, and jet shapes are presented as functions of N ch and compared to the predictions of the pythia and herwig event generators. Predictions without multi-parton interactions fail completely to describe the N ch-dependence observed in the data. For increasing N ch, pythia systematically predicts higher jet rates and harder p T spectra than seen in the data, whereas herwig shows the opposite trends. At the highest multiplicity, the data–model agreement is worse for most observables, indicating the need for further tuning and/or new model ingredients.

Abstract

Characteristics of multi-particle production in proton-proton collisions at s√=7 TeV are studied as a function of the charged-particle multiplicity, N ch. The produced particles are separated into two classes: those belonging to jets and those belonging to the underlying event. Charged particles are measured with pseudorapidity |η|<2.4 and transverse momentum p T>0.25 GeV/c. Jets are reconstructed from charged-particles only and required to have p T>5 GeV/c. The distributions of jet p T, average p T of charged particles belonging to the underlying event or to jets, jet rates, and jet shapes are presented as functions of N ch and compared to the predictions of the pythia and herwig event generators. Predictions without multi-parton interactions fail completely to describe the N ch-dependence observed in the data. For increasing N ch, pythia systematically predicts higher jet rates and harder p T spectra than seen in the data, whereas herwig shows the opposite trends. At the highest multiplicity, the data–model agreement is worse for most observables, indicating the need for further tuning and/or new model ingredients.

Statistics

Citations

7 citations in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Downloads

17 downloads since deposited on 18 Feb 2014
4 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Physics Institute
Dewey Decimal Classification:530 Physics
Language:English
Date:2013
Deposited On:18 Feb 2014 15:47
Last Modified:05 Apr 2016 17:37
Publisher:Springer
ISSN:1434-6044
Publisher DOI:https://doi.org/10.1140/epjc/s10052-013-2674-5

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations