Header

UZH-Logo

Maintenance Infos

Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice


Pineton de Chambrun, G; Body-Malapel, M; Frey-Wagner, I; Djouina, M; Deknuydt, F; Atrott, K; Esquerre, N; Altare, F; Neut, C; Arrieta, M C; Kanneganti, T-D; Rogler, G; Colombel, J-F; Cortot, A; Desreumaux, P; Vignal, C (2014). Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice. Mucosal immunology, 7(3):589-601.

Abstract

The increasing incidence of inflammatory bowel diseases (IBDs) in developing countries has highlighted the critical role of environmental pollutants as causative factors in their pathophysiology. Despite its ubiquity and immune toxicity, the impact of aluminum in the gut is not known. This study aimed to evaluate the effects of environmentally relevant intoxication with aluminum in murine models of colitis and to explore the underlying mechanisms. Oral administration of aluminum worsened intestinal inflammation in mice with 2,4,6-trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis and chronic colitis in interleukin 10-negative (IL10(-/-)) mice. Aluminum increased the intensity and duration of macroscopic and histologic inflammation, colonic myeloperoxidase activity, inflammatory cytokines expression, and decreased the epithelial cell renewal compared with control animals. Under basal conditions, aluminum impaired intestinal barrier function. In vitro, aluminum induced granuloma formation and synergized with lipopolysaccharide to stimulate inflammatory cytokines expression by epithelial cells. Deleterious effects of aluminum on intestinal inflammation and mucosal repair strongly suggest that aluminum might be an environmental IBD risk factor.Mucosal Immunology advance online publication, 16 October 2013; doi:10.1038/mi.2013.78.

Abstract

The increasing incidence of inflammatory bowel diseases (IBDs) in developing countries has highlighted the critical role of environmental pollutants as causative factors in their pathophysiology. Despite its ubiquity and immune toxicity, the impact of aluminum in the gut is not known. This study aimed to evaluate the effects of environmentally relevant intoxication with aluminum in murine models of colitis and to explore the underlying mechanisms. Oral administration of aluminum worsened intestinal inflammation in mice with 2,4,6-trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis and chronic colitis in interleukin 10-negative (IL10(-/-)) mice. Aluminum increased the intensity and duration of macroscopic and histologic inflammation, colonic myeloperoxidase activity, inflammatory cytokines expression, and decreased the epithelial cell renewal compared with control animals. Under basal conditions, aluminum impaired intestinal barrier function. In vitro, aluminum induced granuloma formation and synergized with lipopolysaccharide to stimulate inflammatory cytokines expression by epithelial cells. Deleterious effects of aluminum on intestinal inflammation and mucosal repair strongly suggest that aluminum might be an environmental IBD risk factor.Mucosal Immunology advance online publication, 16 October 2013; doi:10.1038/mi.2013.78.

Statistics

Citations

15 citations in Web of Science®
24 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

0 downloads since deposited on 21 Feb 2014
60 downloads since 12 months

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:04 Faculty of Medicine > University Hospital Zurich > Clinic for Gastroenterology and Hepatology
Dewey Decimal Classification:610 Medicine & health
Language:German
Date:2014
Deposited On:21 Feb 2014 11:45
Last Modified:08 Dec 2017 04:13
Publisher:Nature Publishing Group
ISSN:1933-0219
Free access at:PubMed ID. An embargo period may apply.
Publisher DOI:https://doi.org/10.1038/mi.2013.78
PubMed ID:24129165

Download

Download PDF  'Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice'.
Preview
Content: Published Version
Filetype: PDF
Size: 2MB
View at publisher