Header

UZH-Logo

Maintenance Infos

Stereotypical bouton clustering of individual neurons in cat primary visual cortex


Binzegger, T; Douglas, R J; Martin, K A C (2007). Stereotypical bouton clustering of individual neurons in cat primary visual cortex. Journal of Neuroscience, 27(45):12242-12254.

Abstract

In all species examined, with the exception of rodents, the axons of neocortical neurons form boutons in multiple separate clusters. Most descriptions of clusters are anecdotal, so here we developed an objective method for identifying clusters. We applied a mean-shift cluster-algorithm to three-dimensional reconstructions of 39 individual neurons and three thalamic afferents from the cat primary visual cortex. Both spiny (20 of 26) and smooth (7 of 13) neurons formed at least two distinct ellipsoidal clusters (range, 2-7). For all cell types, cluster formation is heterogenous, but is regulated so that cluster size and the number of boutons allocated to a cluster equalize with increasing number of clusters formed by a neuron. The bouton density within a cluster is inversely related to the spatial scale of the axon, resulting in a four times greater density for smooth neurons than for spiny neurons. Thus, the inhibitory action of the smooth neurons is much more concentrated and focal than the excitatory action of spiny neurons. The cluster with the highest number of boutons (primary cluster) was typically located around or above the soma of the parent neuron. The distance to the next cluster was proportional to the diameter of the primary cluster, suggesting that there is an optimal distance and spatial focus of the lateral influence of a neuron. The lateral spread of clustered axons may thus support a spoke-like network architecture that routes signals to localized sites, thereby reducing signal correlation and redundancy.

Abstract

In all species examined, with the exception of rodents, the axons of neocortical neurons form boutons in multiple separate clusters. Most descriptions of clusters are anecdotal, so here we developed an objective method for identifying clusters. We applied a mean-shift cluster-algorithm to three-dimensional reconstructions of 39 individual neurons and three thalamic afferents from the cat primary visual cortex. Both spiny (20 of 26) and smooth (7 of 13) neurons formed at least two distinct ellipsoidal clusters (range, 2-7). For all cell types, cluster formation is heterogenous, but is regulated so that cluster size and the number of boutons allocated to a cluster equalize with increasing number of clusters formed by a neuron. The bouton density within a cluster is inversely related to the spatial scale of the axon, resulting in a four times greater density for smooth neurons than for spiny neurons. Thus, the inhibitory action of the smooth neurons is much more concentrated and focal than the excitatory action of spiny neurons. The cluster with the highest number of boutons (primary cluster) was typically located around or above the soma of the parent neuron. The distance to the next cluster was proportional to the diameter of the primary cluster, suggesting that there is an optimal distance and spatial focus of the lateral influence of a neuron. The lateral spread of clustered axons may thus support a spoke-like network architecture that routes signals to localized sites, thereby reducing signal correlation and redundancy.

Statistics

Citations

49 citations in Web of Science®
50 citations in Scopus®
Google Scholar™

Altmetrics

Downloads

23 downloads since deposited on 19 Mar 2014
13 downloads since 12 months
Detailed statistics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2007
Deposited On:19 Mar 2014 09:45
Last Modified:05 Apr 2016 17:40
Publisher:Society for Neuroscience
ISSN:0270-6474
Free access at:Publisher DOI. An embargo period may apply.
Publisher DOI:https://doi.org/10.1523/JNEUROSCI.3753-07.2007
PubMed ID:17989290

Download

Preview Icon on Download
Preview
Content: Published Version
Filetype: PDF
Size: 1MB
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations