Header

UZH-Logo

Maintenance Infos

The functional role of different neural activation profiles during precision grip: an artificial neural network approach


Grandjean, B; Hepp-Reymond, M-C; Maier, M A (2007). The functional role of different neural activation profiles during precision grip: an artificial neural network approach. Journal of Physiology-Paris, 101(1 - 3):9 - 21.

Abstract

A dynamic and recurrent artificial neural network was used to investigate the functional properties of firing patterns observed in the primary motor (M1) and the primary somatosensory (S1) cortex of the behaving monkey during control of precision grip force. In the behaving monkey it was found that neurons in M1 and in S1 increase their firing activity with increasing grip force, as do the intrinsic and extrinsic hand muscles implicated in the task. However, some neurons also decreased their activity as a function of increasing force. The functional implication of these latter neurons is not clear and has not been elucidated so far. In order to explore their functional implication, we therefore simulated patterns of neural activity in artificial neural networks that represent cortical, spinal and afferent neural populations and tested whether particular activity profiles would emerge as a function of the input and of the connectivity of these networks. The functional implication of units with emergent or imposed decreasing activity was then explored. Decreasing patterns of activity in M1 units did not emerge from the networks. However, the same networks generated decreasing activity if imposed as target patterns. As indicated by the emerging weight space, M1 projection units with decreasing patterns are functionally less involved in driving alpha motoneurons than units with increasing profiles. Furthermore, these units did not provide significant fusimotor drive, whereas those with increasing profiles did. Fusimotor drive was a function of the (imposed) form of muscle spindle afferent activity: with gamma (fusimotor) drive, muscle spindle afferents provided signals other than muscle length (as observed experimentally). The network solutions thus predict a functional dichotomy between increasing and decreasing M1 neurons: the former primarily drive alpha and gamma motoneurons, the latter only weakly alpha motoneurons.

Abstract

A dynamic and recurrent artificial neural network was used to investigate the functional properties of firing patterns observed in the primary motor (M1) and the primary somatosensory (S1) cortex of the behaving monkey during control of precision grip force. In the behaving monkey it was found that neurons in M1 and in S1 increase their firing activity with increasing grip force, as do the intrinsic and extrinsic hand muscles implicated in the task. However, some neurons also decreased their activity as a function of increasing force. The functional implication of these latter neurons is not clear and has not been elucidated so far. In order to explore their functional implication, we therefore simulated patterns of neural activity in artificial neural networks that represent cortical, spinal and afferent neural populations and tested whether particular activity profiles would emerge as a function of the input and of the connectivity of these networks. The functional implication of units with emergent or imposed decreasing activity was then explored. Decreasing patterns of activity in M1 units did not emerge from the networks. However, the same networks generated decreasing activity if imposed as target patterns. As indicated by the emerging weight space, M1 projection units with decreasing patterns are functionally less involved in driving alpha motoneurons than units with increasing profiles. Furthermore, these units did not provide significant fusimotor drive, whereas those with increasing profiles did. Fusimotor drive was a function of the (imposed) form of muscle spindle afferent activity: with gamma (fusimotor) drive, muscle spindle afferents provided signals other than muscle length (as observed experimentally). The network solutions thus predict a functional dichotomy between increasing and decreasing M1 neurons: the former primarily drive alpha and gamma motoneurons, the latter only weakly alpha motoneurons.

Statistics

Citations

1 citation in Web of Science®
1 citation in Scopus®
Google Scholar™

Altmetrics

Additional indexing

Item Type:Journal Article, refereed, original work
Communities & Collections:07 Faculty of Science > Institute of Neuroinformatics
Dewey Decimal Classification:570 Life sciences; biology
Language:English
Date:2007
Deposited On:12 Mar 2014 15:08
Last Modified:05 Apr 2016 17:41
Publisher:Elsevier
Number of Pages:13
ISSN:0928-4257
Publisher DOI:https://doi.org/10.1016/j.jphysparis.2007.10.005
PubMed ID:18023563

Download

Full text not available from this repository.
View at publisher

TrendTerms

TrendTerms displays relevant terms of the abstract of this publication and related documents on a map. The terms and their relations were extracted from ZORA using word statistics. Their timelines are taken from ZORA as well. The bubble size of a term is proportional to the number of documents where the term occurs. Red, orange, yellow and green colors are used for terms that occur in the current document; red indicates high interlinkedness of a term with other terms, orange, yellow and green decreasing interlinkedness. Blue is used for terms that have a relation with the terms in this document, but occur in other documents.
You can navigate and zoom the map. Mouse-hovering a term displays its timeline, clicking it yields the associated documents.

Author Collaborations